Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290014901> ?p ?o ?g. }
- W4290014901 endingPage "5652" @default.
- W4290014901 startingPage "5641" @default.
- W4290014901 abstract "Connectivity-based brain region parcellation from functional magnetic resonance imaging (fMRI) data is complicated by heterogeneity among aged and diseased subjects, particularly when the data are spatially transformed to a common space. Here, we propose a group-guided functional brain region parcellation model capable of obtaining subregions from a target region with consistent connectivity profiles across multiple subjects, even when the fMRI signals are kept in their native spaces. The model is based on a joint constrained canonical correlation analysis (JC-CCA) method that achieves group-guided parcellation while allowing the data dimension of the parcellated regions for each subject to vary. We performed extensive experiments on synthetic and real data to demonstrate the superiority of the proposed model compared to other classical methods. When applied to fMRI data of subjects with and without Parkinson's disease (PD) to estimate the subregions in the Putamen, significant between-group differences were found in the derived subregions and the connectivity patterns. Superior classification and regression results were obtained, demonstrating its potential in clinical practice." @default.
- W4290014901 created "2022-08-06" @default.
- W4290014901 creator A5012899592 @default.
- W4290014901 creator A5018073672 @default.
- W4290014901 creator A5021255536 @default.
- W4290014901 creator A5029102289 @default.
- W4290014901 creator A5077155065 @default.
- W4290014901 creator A5079007635 @default.
- W4290014901 creator A5083857025 @default.
- W4290014901 date "2022-11-01" @default.
- W4290014901 modified "2023-10-16" @default.
- W4290014901 title "A Joint Constrained CCA Model for Network-Dependent Brain Subregion Parcellation" @default.
- W4290014901 cites W1040825594 @default.
- W4290014901 cites W1570342394 @default.
- W4290014901 cites W1781787094 @default.
- W4290014901 cites W1999976658 @default.
- W4290014901 cites W2016843373 @default.
- W4290014901 cites W2025341678 @default.
- W4290014901 cites W2027662587 @default.
- W4290014901 cites W2038618926 @default.
- W4290014901 cites W2046035753 @default.
- W4290014901 cites W2057138653 @default.
- W4290014901 cites W2058046532 @default.
- W4290014901 cites W2064935446 @default.
- W4290014901 cites W2070686933 @default.
- W4290014901 cites W2117140276 @default.
- W4290014901 cites W2123908362 @default.
- W4290014901 cites W2138905229 @default.
- W4290014901 cites W2156266701 @default.
- W4290014901 cites W2162261751 @default.
- W4290014901 cites W2281079284 @default.
- W4290014901 cites W2302574298 @default.
- W4290014901 cites W2402346616 @default.
- W4290014901 cites W2405691402 @default.
- W4290014901 cites W2500004684 @default.
- W4290014901 cites W2606796488 @default.
- W4290014901 cites W2795051509 @default.
- W4290014901 cites W2896337276 @default.
- W4290014901 cites W2896587207 @default.
- W4290014901 cites W2896997424 @default.
- W4290014901 cites W2901083077 @default.
- W4290014901 cites W2942812981 @default.
- W4290014901 cites W2945047858 @default.
- W4290014901 cites W2969944904 @default.
- W4290014901 cites W2981153408 @default.
- W4290014901 cites W3006025189 @default.
- W4290014901 cites W3006834685 @default.
- W4290014901 cites W3035664210 @default.
- W4290014901 cites W3037286204 @default.
- W4290014901 cites W3041046627 @default.
- W4290014901 cites W3042442731 @default.
- W4290014901 cites W3091722552 @default.
- W4290014901 cites W3123006928 @default.
- W4290014901 cites W3124267158 @default.
- W4290014901 cites W3145036394 @default.
- W4290014901 cites W3165482596 @default.
- W4290014901 cites W3203263145 @default.
- W4290014901 cites W3206747803 @default.
- W4290014901 cites W4254909614 @default.
- W4290014901 doi "https://doi.org/10.1109/jbhi.2022.3196689" @default.
- W4290014901 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35930507" @default.
- W4290014901 hasPublicationYear "2022" @default.
- W4290014901 type Work @default.
- W4290014901 citedByCount "3" @default.
- W4290014901 countsByYear W42900149012023 @default.
- W4290014901 crossrefType "journal-article" @default.
- W4290014901 hasAuthorship W4290014901A5012899592 @default.
- W4290014901 hasAuthorship W4290014901A5018073672 @default.
- W4290014901 hasAuthorship W4290014901A5021255536 @default.
- W4290014901 hasAuthorship W4290014901A5029102289 @default.
- W4290014901 hasAuthorship W4290014901A5077155065 @default.
- W4290014901 hasAuthorship W4290014901A5079007635 @default.
- W4290014901 hasAuthorship W4290014901A5083857025 @default.
- W4290014901 hasConcept C117220453 @default.
- W4290014901 hasConcept C153180895 @default.
- W4290014901 hasConcept C153874254 @default.
- W4290014901 hasConcept C154945302 @default.
- W4290014901 hasConcept C15744967 @default.
- W4290014901 hasConcept C169760540 @default.
- W4290014901 hasConcept C2524010 @default.
- W4290014901 hasConcept C2779226451 @default.
- W4290014901 hasConcept C2779714222 @default.
- W4290014901 hasConcept C33923547 @default.
- W4290014901 hasConcept C41008148 @default.
- W4290014901 hasConcept C58693492 @default.
- W4290014901 hasConceptScore W4290014901C117220453 @default.
- W4290014901 hasConceptScore W4290014901C153180895 @default.
- W4290014901 hasConceptScore W4290014901C153874254 @default.
- W4290014901 hasConceptScore W4290014901C154945302 @default.
- W4290014901 hasConceptScore W4290014901C15744967 @default.
- W4290014901 hasConceptScore W4290014901C169760540 @default.
- W4290014901 hasConceptScore W4290014901C2524010 @default.
- W4290014901 hasConceptScore W4290014901C2779226451 @default.
- W4290014901 hasConceptScore W4290014901C2779714222 @default.
- W4290014901 hasConceptScore W4290014901C33923547 @default.
- W4290014901 hasConceptScore W4290014901C41008148 @default.
- W4290014901 hasConceptScore W4290014901C58693492 @default.
- W4290014901 hasFunder F4320321001 @default.