Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290043213> ?p ?o ?g. }
- W4290043213 endingPage "69838" @default.
- W4290043213 startingPage "69822" @default.
- W4290043213 abstract "Recently, network intrusion attacks, particularly new unknown attacks referred to as zero-day attacks, have become a global phenomenon. Zero-day network intrusion attacks constitute a frequent cybersecurity threat, as they seek to exploit the vulnerabilities of a network system. Previous studies have demonstrated that zero-day attacks can compromise a network for prolonged periods if network traffic analysis (NTA) is not performed thoroughly and efficiently. NTA plays a crucial role in supporting machine learning (ML) based network intrusion detection systems (NIDS) by monitoring and extracting meaningful information from network traffic data. Network traffic data constitute large volumes of data described by features such as destination-to-source packet count. It is important to use only those features that have a significant impact on the performance of an NIDS. The problem is that most existing ML models for NIDS employ features such as Internet protocol (IP) addresses that are redundant for detecting zero-day attacks and therefore negatively impact the performance of these ML models. The solution proposed in this study demonstrates that the law of anomalous numbers, famously known as Benford’s law, is a viable technique that can effectively identify significant network features that are indicative of anomalous behaviour and can be used for detecting zero-day attacks. Finally, our study illustrates that semi-supervised ML approaches are effective for detecting zero-day attacks if significant features are optimally chosen. The experimental results demonstrate that one-class support vector machines achieved the best results (Matthews correlation coefficient of 74% and F<sub>1</sub> score of 85%) for detecting zero-day network attacks." @default.
- W4290043213 created "2022-08-06" @default.
- W4290043213 creator A5045958695 @default.
- W4290043213 creator A5051643060 @default.
- W4290043213 date "2022-01-01" @default.
- W4290043213 modified "2023-10-14" @default.
- W4290043213 title "Detecting Zero-Day Intrusion Attacks Using Semi-Supervised Machine Learning Approaches" @default.
- W4290043213 cites W1568253479 @default.
- W4290043213 cites W1902748306 @default.
- W4290043213 cites W2056787146 @default.
- W4290043213 cites W2328120369 @default.
- W4290043213 cites W2342408547 @default.
- W4290043213 cites W2604105233 @default.
- W4290043213 cites W2620580412 @default.
- W4290043213 cites W2754445169 @default.
- W4290043213 cites W2762776925 @default.
- W4290043213 cites W2766402408 @default.
- W4290043213 cites W2787322429 @default.
- W4290043213 cites W2789828921 @default.
- W4290043213 cites W2790583291 @default.
- W4290043213 cites W2901725274 @default.
- W4290043213 cites W2919868916 @default.
- W4290043213 cites W2921177652 @default.
- W4290043213 cites W2921708219 @default.
- W4290043213 cites W2924689635 @default.
- W4290043213 cites W2946445608 @default.
- W4290043213 cites W2981929856 @default.
- W4290043213 cites W2982682021 @default.
- W4290043213 cites W2999309192 @default.
- W4290043213 cites W3007580316 @default.
- W4290043213 cites W3009193884 @default.
- W4290043213 cites W3016974523 @default.
- W4290043213 cites W3027374119 @default.
- W4290043213 cites W3033213260 @default.
- W4290043213 cites W3035311645 @default.
- W4290043213 cites W3038955483 @default.
- W4290043213 cites W3040628207 @default.
- W4290043213 cites W3043530913 @default.
- W4290043213 cites W3092771185 @default.
- W4290043213 cites W3105087971 @default.
- W4290043213 cites W3105939760 @default.
- W4290043213 cites W3110819044 @default.
- W4290043213 cites W3176721776 @default.
- W4290043213 cites W4206101301 @default.
- W4290043213 doi "https://doi.org/10.1109/access.2022.3187116" @default.
- W4290043213 hasPublicationYear "2022" @default.
- W4290043213 type Work @default.
- W4290043213 citedByCount "10" @default.
- W4290043213 countsByYear W42900432132022 @default.
- W4290043213 countsByYear W42900432132023 @default.
- W4290043213 crossrefType "journal-article" @default.
- W4290043213 hasAuthorship W4290043213A5045958695 @default.
- W4290043213 hasAuthorship W4290043213A5051643060 @default.
- W4290043213 hasBestOaLocation W42900432131 @default.
- W4290043213 hasConcept C110875604 @default.
- W4290043213 hasConcept C119857082 @default.
- W4290043213 hasConcept C12267149 @default.
- W4290043213 hasConcept C124101348 @default.
- W4290043213 hasConcept C127313418 @default.
- W4290043213 hasConcept C136764020 @default.
- W4290043213 hasConcept C138885662 @default.
- W4290043213 hasConcept C154945302 @default.
- W4290043213 hasConcept C158251709 @default.
- W4290043213 hasConcept C158379750 @default.
- W4290043213 hasConcept C165696696 @default.
- W4290043213 hasConcept C17409809 @default.
- W4290043213 hasConcept C182590292 @default.
- W4290043213 hasConcept C2780813799 @default.
- W4290043213 hasConcept C35525427 @default.
- W4290043213 hasConcept C38652104 @default.
- W4290043213 hasConcept C41008148 @default.
- W4290043213 hasConcept C41895202 @default.
- W4290043213 hasConceptScore W4290043213C110875604 @default.
- W4290043213 hasConceptScore W4290043213C119857082 @default.
- W4290043213 hasConceptScore W4290043213C12267149 @default.
- W4290043213 hasConceptScore W4290043213C124101348 @default.
- W4290043213 hasConceptScore W4290043213C127313418 @default.
- W4290043213 hasConceptScore W4290043213C136764020 @default.
- W4290043213 hasConceptScore W4290043213C138885662 @default.
- W4290043213 hasConceptScore W4290043213C154945302 @default.
- W4290043213 hasConceptScore W4290043213C158251709 @default.
- W4290043213 hasConceptScore W4290043213C158379750 @default.
- W4290043213 hasConceptScore W4290043213C165696696 @default.
- W4290043213 hasConceptScore W4290043213C17409809 @default.
- W4290043213 hasConceptScore W4290043213C182590292 @default.
- W4290043213 hasConceptScore W4290043213C2780813799 @default.
- W4290043213 hasConceptScore W4290043213C35525427 @default.
- W4290043213 hasConceptScore W4290043213C38652104 @default.
- W4290043213 hasConceptScore W4290043213C41008148 @default.
- W4290043213 hasConceptScore W4290043213C41895202 @default.
- W4290043213 hasFunder F4320320692 @default.
- W4290043213 hasLocation W42900432131 @default.
- W4290043213 hasOpenAccess W4290043213 @default.
- W4290043213 hasPrimaryLocation W42900432131 @default.
- W4290043213 hasRelatedWork W1970512110 @default.
- W4290043213 hasRelatedWork W2007276291 @default.
- W4290043213 hasRelatedWork W2078846165 @default.
- W4290043213 hasRelatedWork W2154595003 @default.