Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290047857> ?p ?o ?g. }
- W4290047857 endingPage "379" @default.
- W4290047857 startingPage "363" @default.
- W4290047857 abstract "The Internet-of-Things (IoT) edge allows cloud computing services for topology and location-sensitive distributed computing. As an immediate benefit, it improves network reliability and latency by enabling data access and processing rapidly and efficiently near IoT devices. However, it comes with several issues stemming from the complexity, the security, the energy consumption, and the instability due to the decentralization of service localization. Furthermore, the multi-resource allocation and task scheduling make this task the furthest from being straightforward. Blockchain has been envisioned to enforce trustworthiness in diverse IoT environments. However, high latency and high energy costs are incurred to process IoT transactions. This paper introduces a novel Blockchain-based Deep Reinforcement Learning (DRL) approach to enable energy-aware task scheduling and offloading in an Software Defined Networking (SDN)-enabled IoT network. The Asynchronous Actor-Critic Agent (A3C) DRL-based policy achieves efficient task scheduling and offloading. The latter is in symbiosis with Proof-of-Authority Blockchain consensus to validate IoT transactions and blocks. By doing so, we improve reliability and low latency and achieve energy efficiency for SDN-enabled IoT networks. The A3C policy combined with the Blockchain is proved theoretically. Carried out experiments put forth that our approach offers 50% better energy efficiency, which outperforms traditional consensus algorithms, i.e., Proof of Work and PBFT, in terms of throughput and network latency and offers better scheduling performance. • Blockchain-based Deep Reinforcement Learning applied for task scheduling and offloading in an SDN-enabled IoT network. • Optimization of consumable energy with improving QoS during tasks scheduling and offloading. • Enhance task scheduling and offloading compared to well established DRL models." @default.
- W4290047857 created "2022-08-06" @default.
- W4290047857 creator A5041565980 @default.
- W4290047857 creator A5068277633 @default.
- W4290047857 creator A5070511935 @default.
- W4290047857 date "2022-12-01" @default.
- W4290047857 modified "2023-10-02" @default.
- W4290047857 title "Deep Reinforcement Learning for energy-aware task offloading in join SDN-Blockchain 5G massive IoT edge network" @default.
- W4290047857 cites W2145339207 @default.
- W4290047857 cites W2392113277 @default.
- W4290047857 cites W2514791705 @default.
- W4290047857 cites W2745300114 @default.
- W4290047857 cites W2746553616 @default.
- W4290047857 cites W2753580776 @default.
- W4290047857 cites W2757817063 @default.
- W4290047857 cites W2767852042 @default.
- W4290047857 cites W2793346081 @default.
- W4290047857 cites W2804817434 @default.
- W4290047857 cites W2891362044 @default.
- W4290047857 cites W2907165388 @default.
- W4290047857 cites W2922585446 @default.
- W4290047857 cites W2954485493 @default.
- W4290047857 cites W2969236124 @default.
- W4290047857 cites W2975626022 @default.
- W4290047857 cites W2984381742 @default.
- W4290047857 cites W2990718401 @default.
- W4290047857 cites W2994826096 @default.
- W4290047857 cites W2999537220 @default.
- W4290047857 cites W3001361085 @default.
- W4290047857 cites W3015625671 @default.
- W4290047857 cites W3017275226 @default.
- W4290047857 cites W3023266124 @default.
- W4290047857 cites W3024192182 @default.
- W4290047857 cites W3035208698 @default.
- W4290047857 cites W3045604743 @default.
- W4290047857 cites W3048955347 @default.
- W4290047857 cites W3061095003 @default.
- W4290047857 cites W3086931396 @default.
- W4290047857 cites W3098789502 @default.
- W4290047857 cites W3104200981 @default.
- W4290047857 cites W3117607440 @default.
- W4290047857 cites W3126817508 @default.
- W4290047857 cites W3132616177 @default.
- W4290047857 cites W3137953094 @default.
- W4290047857 cites W3214976678 @default.
- W4290047857 cites W4200144682 @default.
- W4290047857 cites W4206573673 @default.
- W4290047857 cites W4206626397 @default.
- W4290047857 cites W4224287422 @default.
- W4290047857 cites W4224991311 @default.
- W4290047857 cites W4243040688 @default.
- W4290047857 doi "https://doi.org/10.1016/j.future.2022.07.024" @default.
- W4290047857 hasPublicationYear "2022" @default.
- W4290047857 type Work @default.
- W4290047857 citedByCount "13" @default.
- W4290047857 countsByYear W42900478572022 @default.
- W4290047857 countsByYear W42900478572023 @default.
- W4290047857 crossrefType "journal-article" @default.
- W4290047857 hasAuthorship W4290047857A5041565980 @default.
- W4290047857 hasAuthorship W4290047857A5068277633 @default.
- W4290047857 hasAuthorship W4290047857A5070511935 @default.
- W4290047857 hasConcept C114614502 @default.
- W4290047857 hasConcept C120314980 @default.
- W4290047857 hasConcept C154945302 @default.
- W4290047857 hasConcept C162307627 @default.
- W4290047857 hasConcept C162324750 @default.
- W4290047857 hasConcept C187736073 @default.
- W4290047857 hasConcept C2776124973 @default.
- W4290047857 hasConcept C2779687700 @default.
- W4290047857 hasConcept C2780451532 @default.
- W4290047857 hasConcept C31258907 @default.
- W4290047857 hasConcept C33923547 @default.
- W4290047857 hasConcept C38652104 @default.
- W4290047857 hasConcept C41008148 @default.
- W4290047857 hasConcept C81860439 @default.
- W4290047857 hasConcept C97541855 @default.
- W4290047857 hasConceptScore W4290047857C114614502 @default.
- W4290047857 hasConceptScore W4290047857C120314980 @default.
- W4290047857 hasConceptScore W4290047857C154945302 @default.
- W4290047857 hasConceptScore W4290047857C162307627 @default.
- W4290047857 hasConceptScore W4290047857C162324750 @default.
- W4290047857 hasConceptScore W4290047857C187736073 @default.
- W4290047857 hasConceptScore W4290047857C2776124973 @default.
- W4290047857 hasConceptScore W4290047857C2779687700 @default.
- W4290047857 hasConceptScore W4290047857C2780451532 @default.
- W4290047857 hasConceptScore W4290047857C31258907 @default.
- W4290047857 hasConceptScore W4290047857C33923547 @default.
- W4290047857 hasConceptScore W4290047857C38652104 @default.
- W4290047857 hasConceptScore W4290047857C41008148 @default.
- W4290047857 hasConceptScore W4290047857C81860439 @default.
- W4290047857 hasConceptScore W4290047857C97541855 @default.
- W4290047857 hasLocation W42900478571 @default.
- W4290047857 hasOpenAccess W4290047857 @default.
- W4290047857 hasPrimaryLocation W42900478571 @default.
- W4290047857 hasRelatedWork W1484063601 @default.
- W4290047857 hasRelatedWork W2969972609 @default.
- W4290047857 hasRelatedWork W3015289171 @default.
- W4290047857 hasRelatedWork W3136901928 @default.