Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290052362> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4290052362 endingPage "337" @default.
- W4290052362 startingPage "326" @default.
- W4290052362 abstract "AbstractCOVID-19, an infectious coronavirus disease, triggered a pandemic that resulted in countless deaths. Since its inception, clinical institutions have used computed tomography as a supplemental screening method to reverse transcription-polymerase chain reaction. Deep learning approaches have shown promising results in addressing the problem; however, less computationally expensive techniques, such as those based on handcrafted descriptors and shallow classifiers, may be equally capable of detecting COVID-19 based on medical images of patients. This work proposes an initial investigation of several handcrafted descriptors well known in the computer vision literature already been exploited for similar tasks. The goal is to discriminate tomographic images belonging to three classes, COVID-19, pneumonia, and normal conditions, and present in a large public dataset. The results show that kNN and ensembles trained with texture descriptors achieve outstanding accuracy in this task, reaching accuracy and F-measure of 93.05% and 89.63%, respectively. Although it did not exceed state of the art, it achieved satisfactory performance with only 36 features, enabling the potential to achieve remarkable improvements from a computational complexity perspective.KeywordsComputer visionShallow learningImage processingCOVID-19 detectionTexture featuresCT scan images" @default.
- W4290052362 created "2022-08-06" @default.
- W4290052362 creator A5009180528 @default.
- W4290052362 creator A5010294470 @default.
- W4290052362 creator A5035691852 @default.
- W4290052362 date "2022-01-01" @default.
- W4290052362 modified "2023-09-24" @default.
- W4290052362 title "A Shallow Learning Investigation for COVID-19 Classification" @default.
- W4290052362 cites W1986649315 @default.
- W4290052362 cites W2024352272 @default.
- W4290052362 cites W2044465660 @default.
- W4290052362 cites W2159498975 @default.
- W4290052362 cites W2163352848 @default.
- W4290052362 cites W2299239301 @default.
- W4290052362 cites W2568740995 @default.
- W4290052362 cites W2580767461 @default.
- W4290052362 cites W2764160093 @default.
- W4290052362 cites W2792140454 @default.
- W4290052362 cites W2886234949 @default.
- W4290052362 cites W2906395823 @default.
- W4290052362 cites W2913941036 @default.
- W4290052362 cites W2923463496 @default.
- W4290052362 cites W2967412240 @default.
- W4290052362 cites W3008985036 @default.
- W4290052362 cites W3020653337 @default.
- W4290052362 cites W3046641277 @default.
- W4290052362 cites W3049757379 @default.
- W4290052362 cites W3095044166 @default.
- W4290052362 cites W3104739447 @default.
- W4290052362 cites W3118577024 @default.
- W4290052362 cites W3121590924 @default.
- W4290052362 cites W3136933888 @default.
- W4290052362 cites W3139833881 @default.
- W4290052362 cites W3141637546 @default.
- W4290052362 cites W3157268370 @default.
- W4290052362 cites W3196703073 @default.
- W4290052362 cites W3197337676 @default.
- W4290052362 cites W3208876138 @default.
- W4290052362 cites W4214860167 @default.
- W4290052362 doi "https://doi.org/10.1007/978-3-031-13321-3_29" @default.
- W4290052362 hasPublicationYear "2022" @default.
- W4290052362 type Work @default.
- W4290052362 citedByCount "0" @default.
- W4290052362 crossrefType "book-chapter" @default.
- W4290052362 hasAuthorship W4290052362A5009180528 @default.
- W4290052362 hasAuthorship W4290052362A5010294470 @default.
- W4290052362 hasAuthorship W4290052362A5035691852 @default.
- W4290052362 hasConcept C119857082 @default.
- W4290052362 hasConcept C126838900 @default.
- W4290052362 hasConcept C142724271 @default.
- W4290052362 hasConcept C153180895 @default.
- W4290052362 hasConcept C154945302 @default.
- W4290052362 hasConcept C2779134260 @default.
- W4290052362 hasConcept C3008058167 @default.
- W4290052362 hasConcept C31972630 @default.
- W4290052362 hasConcept C41008148 @default.
- W4290052362 hasConcept C524204448 @default.
- W4290052362 hasConcept C544519230 @default.
- W4290052362 hasConcept C71924100 @default.
- W4290052362 hasConceptScore W4290052362C119857082 @default.
- W4290052362 hasConceptScore W4290052362C126838900 @default.
- W4290052362 hasConceptScore W4290052362C142724271 @default.
- W4290052362 hasConceptScore W4290052362C153180895 @default.
- W4290052362 hasConceptScore W4290052362C154945302 @default.
- W4290052362 hasConceptScore W4290052362C2779134260 @default.
- W4290052362 hasConceptScore W4290052362C3008058167 @default.
- W4290052362 hasConceptScore W4290052362C31972630 @default.
- W4290052362 hasConceptScore W4290052362C41008148 @default.
- W4290052362 hasConceptScore W4290052362C524204448 @default.
- W4290052362 hasConceptScore W4290052362C544519230 @default.
- W4290052362 hasConceptScore W4290052362C71924100 @default.
- W4290052362 hasLocation W42900523621 @default.
- W4290052362 hasOpenAccess W4290052362 @default.
- W4290052362 hasPrimaryLocation W42900523621 @default.
- W4290052362 hasRelatedWork W2898044248 @default.
- W4290052362 hasRelatedWork W3016771994 @default.
- W4290052362 hasRelatedWork W3036511153 @default.
- W4290052362 hasRelatedWork W3036884088 @default.
- W4290052362 hasRelatedWork W3044956284 @default.
- W4290052362 hasRelatedWork W3127749139 @default.
- W4290052362 hasRelatedWork W3130560810 @default.
- W4290052362 hasRelatedWork W3137800387 @default.
- W4290052362 hasRelatedWork W3198655839 @default.
- W4290052362 hasRelatedWork W3160670342 @default.
- W4290052362 isParatext "false" @default.
- W4290052362 isRetracted "false" @default.
- W4290052362 workType "book-chapter" @default.