Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290052382> ?p ?o ?g. }
- W4290052382 endingPage "125320" @default.
- W4290052382 startingPage "125320" @default.
- W4290052382 abstract "Catalytic hydrodeoxygenation is becoming more important industrially due to the urgent need for the conversion of oxygen-rich biomass into a renewable hydrocarbon energy source as means to tackle the climate change crisis. This research examined the catalytic hydrogenation of p-cresol as a model compound, using CuNi bimetallic nanoparticles incorporated into a carbon matrix ([email protected]) as the catalysts, which were prepared using MOFs as the precursors. Various MOFs with varying molar content of nickel (Cu, CuNi0.2, CuNi0.5, CuNi0.8 and CuNi1.1) were prepared and used to derive the MOF-based bimetallic catalysts. The effect of the relative bimetallic compositions, surface morphology, and the oxidation of the metals of the catalysts was studied at different hydrogenation reaction temperatures varying from 200 to 300 °C. Advanced characterisations demonstrate that the MOF-derived Cu/Ni carbon nanocomposite catalyst at a Cu/Ni mole ratio of 0.5 (CuNi0.5/C) shows the highest catalytic activities at 300 °C, giving rise to a conversion rate of 80.3% and selectivity of 82.7% for the formation of 4-methylcyclohexanol (hydrogenation pathway). Cyclic hydrogenation tests also reveal that the CuNi0.5/C showed the highest thermochemical stability with a negligible decrease in catalytic activity despite the high temperature examined for a fast conversion. The preliminary results augur well for the sound promise of using corresponding MOFs derived novel catalysts for hydrogenation application." @default.
- W4290052382 created "2022-08-06" @default.
- W4290052382 creator A5021687717 @default.
- W4290052382 creator A5036747789 @default.
- W4290052382 creator A5060365802 @default.
- W4290052382 creator A5086906808 @default.
- W4290052382 date "2022-12-01" @default.
- W4290052382 modified "2023-10-02" @default.
- W4290052382 title "Hydrodeoxygenation of p-cresol over CuNi@C catalyst derived from metal-organic frameworks precursor" @default.
- W4290052382 cites W1795325825 @default.
- W4290052382 cites W1964237748 @default.
- W4290052382 cites W1970511407 @default.
- W4290052382 cites W1973745391 @default.
- W4290052382 cites W1977416931 @default.
- W4290052382 cites W1980943939 @default.
- W4290052382 cites W1988831775 @default.
- W4290052382 cites W1990853155 @default.
- W4290052382 cites W1990968334 @default.
- W4290052382 cites W1993458283 @default.
- W4290052382 cites W1997589345 @default.
- W4290052382 cites W1997886695 @default.
- W4290052382 cites W2000723365 @default.
- W4290052382 cites W2006210336 @default.
- W4290052382 cites W2010324656 @default.
- W4290052382 cites W2015497282 @default.
- W4290052382 cites W2033634220 @default.
- W4290052382 cites W2034864816 @default.
- W4290052382 cites W2049962843 @default.
- W4290052382 cites W2059119640 @default.
- W4290052382 cites W2061618705 @default.
- W4290052382 cites W2061696467 @default.
- W4290052382 cites W2079465097 @default.
- W4290052382 cites W2090363433 @default.
- W4290052382 cites W2092331312 @default.
- W4290052382 cites W2101432209 @default.
- W4290052382 cites W2142209174 @default.
- W4290052382 cites W2152916346 @default.
- W4290052382 cites W2172132247 @default.
- W4290052382 cites W2181697293 @default.
- W4290052382 cites W2232003149 @default.
- W4290052382 cites W2234481583 @default.
- W4290052382 cites W2320124625 @default.
- W4290052382 cites W2321933020 @default.
- W4290052382 cites W2328373757 @default.
- W4290052382 cites W2331835022 @default.
- W4290052382 cites W2346206973 @default.
- W4290052382 cites W2438298726 @default.
- W4290052382 cites W2510229876 @default.
- W4290052382 cites W2521438405 @default.
- W4290052382 cites W2527766036 @default.
- W4290052382 cites W2591012384 @default.
- W4290052382 cites W2592253840 @default.
- W4290052382 cites W2618127528 @default.
- W4290052382 cites W2740642696 @default.
- W4290052382 cites W2751227682 @default.
- W4290052382 cites W2767523521 @default.
- W4290052382 cites W2770487430 @default.
- W4290052382 cites W2781547234 @default.
- W4290052382 cites W2789877533 @default.
- W4290052382 cites W2802264865 @default.
- W4290052382 cites W2888364779 @default.
- W4290052382 cites W2892184625 @default.
- W4290052382 cites W2900772654 @default.
- W4290052382 cites W2900964684 @default.
- W4290052382 cites W2920951529 @default.
- W4290052382 cites W2941019066 @default.
- W4290052382 cites W2942241946 @default.
- W4290052382 cites W2953599047 @default.
- W4290052382 cites W2986614899 @default.
- W4290052382 cites W2994949001 @default.
- W4290052382 cites W2995502992 @default.
- W4290052382 cites W3005562583 @default.
- W4290052382 cites W3015711348 @default.
- W4290052382 cites W3035265442 @default.
- W4290052382 cites W3039020663 @default.
- W4290052382 cites W3040590296 @default.
- W4290052382 cites W3104990078 @default.
- W4290052382 cites W3114058013 @default.
- W4290052382 cites W3129779870 @default.
- W4290052382 cites W3185852746 @default.
- W4290052382 cites W3201229962 @default.
- W4290052382 cites W3205316229 @default.
- W4290052382 cites W372076196 @default.
- W4290052382 doi "https://doi.org/10.1016/j.fuel.2022.125320" @default.
- W4290052382 hasPublicationYear "2022" @default.
- W4290052382 type Work @default.
- W4290052382 citedByCount "6" @default.
- W4290052382 countsByYear W42900523822023 @default.
- W4290052382 crossrefType "journal-article" @default.
- W4290052382 hasAuthorship W4290052382A5021687717 @default.
- W4290052382 hasAuthorship W4290052382A5036747789 @default.
- W4290052382 hasAuthorship W4290052382A5060365802 @default.
- W4290052382 hasAuthorship W4290052382A5086906808 @default.
- W4290052382 hasConcept C118792377 @default.
- W4290052382 hasConcept C127413603 @default.
- W4290052382 hasConcept C161790260 @default.
- W4290052382 hasConcept C178790620 @default.
- W4290052382 hasConcept C179104552 @default.