Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290056055> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4290056055 abstract "Modeling the relationship between vehicle speed and density on the road is a fundamental problem in traffic flow theory. Recent research found that using the least-squares (LS) method to calibrate single-regime speed-density models is biased because of the uneven distribution of samples. This paper explains the issue of the LS method from a statistical perspective: the biased calibration is caused by the correlations/dependencies in regression residuals. Based on this explanation, we propose a new calibration method for single-regime speed-density models by modeling the covariance of residuals via a zero-mean Gaussian Process (GP). Our approach can be viewed as a generalized least-squares (GLS) method with a specific covariance structure (i.e., kernel function) and is a generalization of the existing LS and the weighted least-squares (WLS) methods. Next, we use a sparse approximation to address the scalability issue of GPs and apply a Markov chain Monte Carlo (MCMC) sampling scheme to obtain the posterior distributions of the parameters for speed-density models and the hyperparameters (i.e., length scale and variance) of the GP kernel. Finally, we calibrate six well-known single-regime speed-density models with the proposed method. Results show that the proposed GP-based methods (1) significantly reduce the biases in the LS calibration, (2) achieve a similar effect as the WLS method, (3) can be used as a non-parametric speed-density model, and (4) provide a Bayesian solution to estimate posterior distributions of parameters and speed-density functions." @default.
- W4290056055 created "2022-08-06" @default.
- W4290056055 creator A5019290469 @default.
- W4290056055 creator A5029362152 @default.
- W4290056055 creator A5032015275 @default.
- W4290056055 creator A5036909025 @default.
- W4290056055 creator A5041260784 @default.
- W4290056055 date "2022-08-04" @default.
- W4290056055 modified "2023-09-27" @default.
- W4290056055 title "Bayesian calibration of traffic flow fundamental diagrams using Gaussian processes" @default.
- W4290056055 doi "https://doi.org/10.48550/arxiv.2208.02799" @default.
- W4290056055 hasPublicationYear "2022" @default.
- W4290056055 type Work @default.
- W4290056055 citedByCount "0" @default.
- W4290056055 crossrefType "posted-content" @default.
- W4290056055 hasAuthorship W4290056055A5019290469 @default.
- W4290056055 hasAuthorship W4290056055A5029362152 @default.
- W4290056055 hasAuthorship W4290056055A5032015275 @default.
- W4290056055 hasAuthorship W4290056055A5036909025 @default.
- W4290056055 hasAuthorship W4290056055A5041260784 @default.
- W4290056055 hasBestOaLocation W42900560551 @default.
- W4290056055 hasConcept C105795698 @default.
- W4290056055 hasConcept C111350023 @default.
- W4290056055 hasConcept C11413529 @default.
- W4290056055 hasConcept C121332964 @default.
- W4290056055 hasConcept C126255220 @default.
- W4290056055 hasConcept C137250428 @default.
- W4290056055 hasConcept C163716315 @default.
- W4290056055 hasConcept C165838908 @default.
- W4290056055 hasConcept C178650346 @default.
- W4290056055 hasConcept C185429906 @default.
- W4290056055 hasConcept C19499675 @default.
- W4290056055 hasConcept C197055811 @default.
- W4290056055 hasConcept C28826006 @default.
- W4290056055 hasConcept C33923547 @default.
- W4290056055 hasConcept C61326573 @default.
- W4290056055 hasConcept C62520636 @default.
- W4290056055 hasConcept C71134354 @default.
- W4290056055 hasConcept C8642999 @default.
- W4290056055 hasConcept C9936470 @default.
- W4290056055 hasConceptScore W4290056055C105795698 @default.
- W4290056055 hasConceptScore W4290056055C111350023 @default.
- W4290056055 hasConceptScore W4290056055C11413529 @default.
- W4290056055 hasConceptScore W4290056055C121332964 @default.
- W4290056055 hasConceptScore W4290056055C126255220 @default.
- W4290056055 hasConceptScore W4290056055C137250428 @default.
- W4290056055 hasConceptScore W4290056055C163716315 @default.
- W4290056055 hasConceptScore W4290056055C165838908 @default.
- W4290056055 hasConceptScore W4290056055C178650346 @default.
- W4290056055 hasConceptScore W4290056055C185429906 @default.
- W4290056055 hasConceptScore W4290056055C19499675 @default.
- W4290056055 hasConceptScore W4290056055C197055811 @default.
- W4290056055 hasConceptScore W4290056055C28826006 @default.
- W4290056055 hasConceptScore W4290056055C33923547 @default.
- W4290056055 hasConceptScore W4290056055C61326573 @default.
- W4290056055 hasConceptScore W4290056055C62520636 @default.
- W4290056055 hasConceptScore W4290056055C71134354 @default.
- W4290056055 hasConceptScore W4290056055C8642999 @default.
- W4290056055 hasConceptScore W4290056055C9936470 @default.
- W4290056055 hasLocation W42900560551 @default.
- W4290056055 hasOpenAccess W4290056055 @default.
- W4290056055 hasPrimaryLocation W42900560551 @default.
- W4290056055 hasRelatedWork W1515527335 @default.
- W4290056055 hasRelatedWork W2022434169 @default.
- W4290056055 hasRelatedWork W2043719486 @default.
- W4290056055 hasRelatedWork W2169410692 @default.
- W4290056055 hasRelatedWork W2375962503 @default.
- W4290056055 hasRelatedWork W2803685231 @default.
- W4290056055 hasRelatedWork W2811199191 @default.
- W4290056055 hasRelatedWork W2949269633 @default.
- W4290056055 hasRelatedWork W2951088868 @default.
- W4290056055 hasRelatedWork W2583709232 @default.
- W4290056055 isParatext "false" @default.
- W4290056055 isRetracted "false" @default.
- W4290056055 workType "article" @default.