Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290189567> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4290189567 abstract "In RSA cryptography numbers of the form $pq$, with $p$ and $q$ two distinct proportional primes play an important role. For a fixed real number $r>1$ we formalize this by saying that an integer $pq$ is an RSA-integer if $p$ and $q$ are primes satisfying $p<qle rp$. Recently Dummit, Granville and Kisilevsky showed that substantially more than a quarter of the odd integers of the form $pq$ up to $x$, with $p, q$ both prime, satisfy $pequiv qequiv 3pmod{4}$. In this paper we investigate this phenomenon for RSA-integers. We establish an analogue of a strong form of the prime number theorem with the logarithmic integral replaced by a variant. From this we derive an asymptotic formula for the number of RSA-integers $le x$ which is much more precise than an earlier one derived by Decker and Moree in 2008." @default.
- W4290189567 created "2022-08-07" @default.
- W4290189567 creator A5009645792 @default.
- W4290189567 creator A5067610736 @default.
- W4290189567 date "2016-06-24" @default.
- W4290189567 modified "2023-09-29" @default.
- W4290189567 title "Products of two proportional primes" @default.
- W4290189567 doi "https://doi.org/10.48550/arxiv.1606.07727" @default.
- W4290189567 hasPublicationYear "2016" @default.
- W4290189567 type Work @default.
- W4290189567 citedByCount "0" @default.
- W4290189567 crossrefType "posted-content" @default.
- W4290189567 hasAuthorship W4290189567A5009645792 @default.
- W4290189567 hasAuthorship W4290189567A5067610736 @default.
- W4290189567 hasBestOaLocation W42901895671 @default.
- W4290189567 hasConcept C113429393 @default.
- W4290189567 hasConcept C114614502 @default.
- W4290189567 hasConcept C118615104 @default.
- W4290189567 hasConcept C134306372 @default.
- W4290189567 hasConcept C169654258 @default.
- W4290189567 hasConcept C184992742 @default.
- W4290189567 hasConcept C199360897 @default.
- W4290189567 hasConcept C30860621 @default.
- W4290189567 hasConcept C33923547 @default.
- W4290189567 hasConcept C39927690 @default.
- W4290189567 hasConcept C41008148 @default.
- W4290189567 hasConcept C94375191 @default.
- W4290189567 hasConcept C97137487 @default.
- W4290189567 hasConceptScore W4290189567C113429393 @default.
- W4290189567 hasConceptScore W4290189567C114614502 @default.
- W4290189567 hasConceptScore W4290189567C118615104 @default.
- W4290189567 hasConceptScore W4290189567C134306372 @default.
- W4290189567 hasConceptScore W4290189567C169654258 @default.
- W4290189567 hasConceptScore W4290189567C184992742 @default.
- W4290189567 hasConceptScore W4290189567C199360897 @default.
- W4290189567 hasConceptScore W4290189567C30860621 @default.
- W4290189567 hasConceptScore W4290189567C33923547 @default.
- W4290189567 hasConceptScore W4290189567C39927690 @default.
- W4290189567 hasConceptScore W4290189567C41008148 @default.
- W4290189567 hasConceptScore W4290189567C94375191 @default.
- W4290189567 hasConceptScore W4290189567C97137487 @default.
- W4290189567 hasLocation W42901895671 @default.
- W4290189567 hasLocation W42901895672 @default.
- W4290189567 hasOpenAccess W4290189567 @default.
- W4290189567 hasPrimaryLocation W42901895671 @default.
- W4290189567 hasRelatedWork W2059692483 @default.
- W4290189567 hasRelatedWork W2061626506 @default.
- W4290189567 hasRelatedWork W2179504188 @default.
- W4290189567 hasRelatedWork W2329993381 @default.
- W4290189567 hasRelatedWork W2426534738 @default.
- W4290189567 hasRelatedWork W2467937158 @default.
- W4290189567 hasRelatedWork W2804929352 @default.
- W4290189567 hasRelatedWork W2944360072 @default.
- W4290189567 hasRelatedWork W2963417776 @default.
- W4290189567 hasRelatedWork W3132192579 @default.
- W4290189567 isParatext "false" @default.
- W4290189567 isRetracted "false" @default.
- W4290189567 workType "article" @default.