Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290442693> ?p ?o ?g. }
- W4290442693 endingPage "109634" @default.
- W4290442693 startingPage "109634" @default.
- W4290442693 abstract "Deep learning approach using convolutional neural networks (CNNs) has ushered in numerous breakthroughs in image-based recognition field, but the electromechanical impedance/admittance (EMI/EMA)-based structural damage identification by CNN remains being refined. This paper proposed a deep learning approach for the raw EMA-based rapid damage quantification on concrete structure utilizing two-dimensional (2D) CNNs. In the approach, the EMA signatures are first split into multiple sub-range responses, among which corresponding to the maximum indices namely root mean square deviations (RMSDs) are selected to construct the input of CNNs for training, and then damage severity degree could be rapidly predicted. The proposed approach is verified through crossover experiments of detecting multiple mass loss damages on a cubic concrete structure. Effect of input size on the performance of the approach is also evaluated by developing different CNN models. Experimental results confirm that the proposed approach is of high accuracy and efficiency even to tiny damages, thus paving a promising way to the real-life monitoring for concrete structures." @default.
- W4290442693 created "2022-08-07" @default.
- W4290442693 creator A5006950425 @default.
- W4290442693 creator A5088101493 @default.
- W4290442693 date "2023-01-01" @default.
- W4290442693 modified "2023-09-28" @default.
- W4290442693 title "A deep learning approach for electromechanical impedance based concrete structural damage quantification using two-dimensional convolutional neural network" @default.
- W4290442693 cites W1967766233 @default.
- W4290442693 cites W1971799039 @default.
- W4290442693 cites W1977423068 @default.
- W4290442693 cites W1985110503 @default.
- W4290442693 cites W1987983067 @default.
- W4290442693 cites W1995251359 @default.
- W4290442693 cites W2018852350 @default.
- W4290442693 cites W2020425667 @default.
- W4290442693 cites W2027050563 @default.
- W4290442693 cites W2035989262 @default.
- W4290442693 cites W2048670932 @default.
- W4290442693 cites W2054944014 @default.
- W4290442693 cites W2060866052 @default.
- W4290442693 cites W2066636721 @default.
- W4290442693 cites W2067276867 @default.
- W4290442693 cites W2073191554 @default.
- W4290442693 cites W2076822705 @default.
- W4290442693 cites W2079973120 @default.
- W4290442693 cites W2082904590 @default.
- W4290442693 cites W2096213078 @default.
- W4290442693 cites W2112796928 @default.
- W4290442693 cites W2135994265 @default.
- W4290442693 cites W2220960644 @default.
- W4290442693 cites W2274360683 @default.
- W4290442693 cites W2280120270 @default.
- W4290442693 cites W2333559969 @default.
- W4290442693 cites W2404692435 @default.
- W4290442693 cites W2461729787 @default.
- W4290442693 cites W2556345765 @default.
- W4290442693 cites W2586230645 @default.
- W4290442693 cites W2593479727 @default.
- W4290442693 cites W2624989649 @default.
- W4290442693 cites W2734669076 @default.
- W4290442693 cites W2735324230 @default.
- W4290442693 cites W2744790985 @default.
- W4290442693 cites W2747553511 @default.
- W4290442693 cites W2756789966 @default.
- W4290442693 cites W2765854388 @default.
- W4290442693 cites W2766635230 @default.
- W4290442693 cites W2783498839 @default.
- W4290442693 cites W2791965385 @default.
- W4290442693 cites W2796412301 @default.
- W4290442693 cites W2801443543 @default.
- W4290442693 cites W2890179326 @default.
- W4290442693 cites W2895791751 @default.
- W4290442693 cites W2900695455 @default.
- W4290442693 cites W2932819601 @default.
- W4290442693 cites W2942829333 @default.
- W4290442693 cites W2962949934 @default.
- W4290442693 cites W3083087818 @default.
- W4290442693 cites W3117882521 @default.
- W4290442693 cites W3118086972 @default.
- W4290442693 cites W3124547747 @default.
- W4290442693 cites W3166014457 @default.
- W4290442693 cites W3189729288 @default.
- W4290442693 doi "https://doi.org/10.1016/j.ymssp.2022.109634" @default.
- W4290442693 hasPublicationYear "2023" @default.
- W4290442693 type Work @default.
- W4290442693 citedByCount "15" @default.
- W4290442693 countsByYear W42904426932022 @default.
- W4290442693 countsByYear W42904426932023 @default.
- W4290442693 crossrefType "journal-article" @default.
- W4290442693 hasAuthorship W4290442693A5006950425 @default.
- W4290442693 hasAuthorship W4290442693A5088101493 @default.
- W4290442693 hasConcept C108583219 @default.
- W4290442693 hasConcept C108811297 @default.
- W4290442693 hasConcept C119599485 @default.
- W4290442693 hasConcept C122507166 @default.
- W4290442693 hasConcept C127413603 @default.
- W4290442693 hasConcept C153180895 @default.
- W4290442693 hasConcept C154945302 @default.
- W4290442693 hasConcept C17829176 @default.
- W4290442693 hasConcept C184892835 @default.
- W4290442693 hasConcept C24326235 @default.
- W4290442693 hasConcept C2776247918 @default.
- W4290442693 hasConcept C41008148 @default.
- W4290442693 hasConcept C43461449 @default.
- W4290442693 hasConcept C50644808 @default.
- W4290442693 hasConcept C66938386 @default.
- W4290442693 hasConcept C81363708 @default.
- W4290442693 hasConceptScore W4290442693C108583219 @default.
- W4290442693 hasConceptScore W4290442693C108811297 @default.
- W4290442693 hasConceptScore W4290442693C119599485 @default.
- W4290442693 hasConceptScore W4290442693C122507166 @default.
- W4290442693 hasConceptScore W4290442693C127413603 @default.
- W4290442693 hasConceptScore W4290442693C153180895 @default.
- W4290442693 hasConceptScore W4290442693C154945302 @default.
- W4290442693 hasConceptScore W4290442693C17829176 @default.
- W4290442693 hasConceptScore W4290442693C184892835 @default.
- W4290442693 hasConceptScore W4290442693C24326235 @default.
- W4290442693 hasConceptScore W4290442693C2776247918 @default.