Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290466983> ?p ?o ?g. }
- W4290466983 endingPage "1858" @default.
- W4290466983 startingPage "1858" @default.
- W4290466983 abstract "Soil salinization is one of the main threats to soils worldwide, which has serious impacts on soil functions. Our objective was to map and assess salt-affectedness on arable land (0.85 km2) in Hungary, with high spatial resolution, using a combination of ensemble machine learning and multivariate geostatistics on three salt-affected soil indicators (i.e., alkalinity, electrical conductivity, and sodium adsorption ratio (n = 85 soil samples)). Ensemble modelling with five base learners (i.e., random forest, extreme gradient boosting, support vector machine, neural network, and generalized linear model) was carried out and the results showed that ensemble modelling outperformed the base learners for alkalinity and sodium adsorption ratio with R2 values of 0.43 and 0.96, respectively, while only the random forest prediction was acceptable for electrical conductivity. Multivariate geostatistics was conducted on the stochastic residuals derived from machine learning modelling, as we could reasonably assume that there is spatial interdependence between the selected salt-affected soil indicators. We used 10-fold cross-validation to check the performance of the spatial predictions and uncertainty quantifications, which provided acceptable results for each selected salt-affected soil indicator (for pH value, electrical conductivity, and sodium adsorption ratio, the root mean square error values were 0.11, 0.86, and 0.22, respectively). Our results showed that the methodology applied in this study is efficient in mapping and assessing salt-affectedness on arable lands with high spatial resolution. A probability map for sodium adsorption ratio represents sodic soils exceeding a threshold value of 13, where they are more likely to have soil structure deterioration and water infiltration problems. This map can help the land user to select the appropriate agrotechnical operation for improving soil quality and yield." @default.
- W4290466983 created "2022-08-08" @default.
- W4290466983 creator A5014759175 @default.
- W4290466983 creator A5027717224 @default.
- W4290466983 creator A5028019024 @default.
- W4290466983 creator A5034539453 @default.
- W4290466983 creator A5035166310 @default.
- W4290466983 creator A5041350380 @default.
- W4290466983 creator A5048189445 @default.
- W4290466983 creator A5055286729 @default.
- W4290466983 creator A5075274722 @default.
- W4290466983 creator A5081129865 @default.
- W4290466983 creator A5082933991 @default.
- W4290466983 creator A5089116957 @default.
- W4290466983 date "2022-08-06" @default.
- W4290466983 modified "2023-10-07" @default.
- W4290466983 title "High-Resolution Mapping and Assessment of Salt-Affectedness on Arable Lands by the Combination of Ensemble Learning and Multivariate Geostatistics" @default.
- W4290466983 cites W1058055990 @default.
- W4290466983 cites W1835370592 @default.
- W4290466983 cites W1975135213 @default.
- W4290466983 cites W1978056375 @default.
- W4290466983 cites W1979997426 @default.
- W4290466983 cites W2007811186 @default.
- W4290466983 cites W2020984716 @default.
- W4290466983 cites W2033904036 @default.
- W4290466983 cites W2039660802 @default.
- W4290466983 cites W2040496597 @default.
- W4290466983 cites W2050179592 @default.
- W4290466983 cites W2051688877 @default.
- W4290466983 cites W2053242893 @default.
- W4290466983 cites W2054325787 @default.
- W4290466983 cites W2058326012 @default.
- W4290466983 cites W2061163110 @default.
- W4290466983 cites W2081255089 @default.
- W4290466983 cites W2094958660 @default.
- W4290466983 cites W2102068507 @default.
- W4290466983 cites W2116395914 @default.
- W4290466983 cites W2117131488 @default.
- W4290466983 cites W2144064225 @default.
- W4290466983 cites W2157563912 @default.
- W4290466983 cites W2313339984 @default.
- W4290466983 cites W2511615992 @default.
- W4290466983 cites W2782641957 @default.
- W4290466983 cites W2798064106 @default.
- W4290466983 cites W2885372267 @default.
- W4290466983 cites W2885746866 @default.
- W4290466983 cites W2892307361 @default.
- W4290466983 cites W2911964244 @default.
- W4290466983 cites W2914874661 @default.
- W4290466983 cites W2918144915 @default.
- W4290466983 cites W2923988252 @default.
- W4290466983 cites W2943321724 @default.
- W4290466983 cites W2965166403 @default.
- W4290466983 cites W2984432074 @default.
- W4290466983 cites W2991803889 @default.
- W4290466983 cites W3012187865 @default.
- W4290466983 cites W3028476056 @default.
- W4290466983 cites W3045395626 @default.
- W4290466983 cites W3096190728 @default.
- W4290466983 cites W3102027041 @default.
- W4290466983 cites W3108731213 @default.
- W4290466983 cites W3111077008 @default.
- W4290466983 cites W3111168497 @default.
- W4290466983 cites W3112218615 @default.
- W4290466983 cites W3132065666 @default.
- W4290466983 cites W3148789799 @default.
- W4290466983 cites W3155227796 @default.
- W4290466983 cites W3188306513 @default.
- W4290466983 cites W3196346489 @default.
- W4290466983 cites W3198054384 @default.
- W4290466983 cites W3208364360 @default.
- W4290466983 cites W4200470036 @default.
- W4290466983 cites W4205388401 @default.
- W4290466983 cites W4211056572 @default.
- W4290466983 cites W4220948491 @default.
- W4290466983 cites W4224321383 @default.
- W4290466983 cites W4251708881 @default.
- W4290466983 cites W4280647697 @default.
- W4290466983 cites W4294541781 @default.
- W4290466983 cites W4302596785 @default.
- W4290466983 doi "https://doi.org/10.3390/agronomy12081858" @default.
- W4290466983 hasPublicationYear "2022" @default.
- W4290466983 type Work @default.
- W4290466983 citedByCount "3" @default.
- W4290466983 countsByYear W42904669832022 @default.
- W4290466983 countsByYear W42904669832023 @default.
- W4290466983 crossrefType "journal-article" @default.
- W4290466983 hasAuthorship W4290466983A5014759175 @default.
- W4290466983 hasAuthorship W4290466983A5027717224 @default.
- W4290466983 hasAuthorship W4290466983A5028019024 @default.
- W4290466983 hasAuthorship W4290466983A5034539453 @default.
- W4290466983 hasAuthorship W4290466983A5035166310 @default.
- W4290466983 hasAuthorship W4290466983A5041350380 @default.
- W4290466983 hasAuthorship W4290466983A5048189445 @default.
- W4290466983 hasAuthorship W4290466983A5055286729 @default.
- W4290466983 hasAuthorship W4290466983A5075274722 @default.
- W4290466983 hasAuthorship W4290466983A5081129865 @default.
- W4290466983 hasAuthorship W4290466983A5082933991 @default.