Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290520210> ?p ?o ?g. }
- W4290520210 endingPage "9695" @default.
- W4290520210 startingPage "9695" @default.
- W4290520210 abstract "Public feelings and reactions associated with finance are gaining significant importance as they help individuals, public health, financial and non-financial institutions, and the government understand mental health, the impact of policies, and counter-response. Every individual sentiment linked with a financial text can be categorized, whether it is a headline or the detailed content published in a newspaper. The Guardian newspaper is considered one of the most famous and the biggest websites for digital media on the internet. Moreover, it can be one of the vital platforms for tracking the public’s mental health and feelings via sentimental analysis of news headlines and detailed content related to finance. One of the key purposes of this study is the public’s mental health tracking via the sentimental analysis of financial text news primarily published on digital media to identify the overall mental health of the public and the impact of national or international financial policies. A dataset was collected using The Guardian application programming interface and processed using the support vector machine, AdaBoost, and single layer convolutional neural network. Among all identified techniques, the single layer convolutional neural network with a classification accuracy of 0.939 is considered the best during the training and testing phases as it produced efficient performance and effective results compared to other techniques, such as support vector machine and AdaBoost with associated classification accuracies 0.677 and 0.761, respectively. The findings of this research would also benefit public health, as well as financial and non-financial institutions." @default.
- W4290520210 created "2022-08-08" @default.
- W4290520210 creator A5008352499 @default.
- W4290520210 creator A5040197354 @default.
- W4290520210 creator A5053176757 @default.
- W4290520210 creator A5061517602 @default.
- W4290520210 creator A5065276883 @default.
- W4290520210 creator A5074164168 @default.
- W4290520210 creator A5077509013 @default.
- W4290520210 creator A5082292122 @default.
- W4290520210 creator A5087313412 @default.
- W4290520210 creator A5090597943 @default.
- W4290520210 date "2022-08-06" @default.
- W4290520210 modified "2023-10-06" @default.
- W4290520210 title "Public’s Mental Health Monitoring via Sentimental Analysis of Financial Text Using Machine Learning Techniques" @default.
- W4290520210 cites W2317515691 @default.
- W4290520210 cites W2408246687 @default.
- W4290520210 cites W2547440287 @default.
- W4290520210 cites W2560070550 @default.
- W4290520210 cites W2586068811 @default.
- W4290520210 cites W2593914038 @default.
- W4290520210 cites W2751455791 @default.
- W4290520210 cites W2779594574 @default.
- W4290520210 cites W2783740942 @default.
- W4290520210 cites W2789996289 @default.
- W4290520210 cites W2888421737 @default.
- W4290520210 cites W2895071272 @default.
- W4290520210 cites W2911815954 @default.
- W4290520210 cites W2920420505 @default.
- W4290520210 cites W2937627530 @default.
- W4290520210 cites W2943858087 @default.
- W4290520210 cites W2963747696 @default.
- W4290520210 cites W2969075210 @default.
- W4290520210 cites W2995474204 @default.
- W4290520210 cites W3003384880 @default.
- W4290520210 cites W3008993296 @default.
- W4290520210 cites W3014870144 @default.
- W4290520210 cites W3022371575 @default.
- W4290520210 cites W3022935508 @default.
- W4290520210 cites W3026487933 @default.
- W4290520210 cites W3030953462 @default.
- W4290520210 cites W3033596160 @default.
- W4290520210 cites W3036643198 @default.
- W4290520210 cites W3039503982 @default.
- W4290520210 cites W3044274150 @default.
- W4290520210 cites W3047725933 @default.
- W4290520210 cites W3049501660 @default.
- W4290520210 cites W3085890295 @default.
- W4290520210 cites W3118453735 @default.
- W4290520210 cites W3118913631 @default.
- W4290520210 cites W3119051141 @default.
- W4290520210 cites W3119643102 @default.
- W4290520210 cites W3120292979 @default.
- W4290520210 cites W3124019418 @default.
- W4290520210 cites W3132467470 @default.
- W4290520210 cites W3133711685 @default.
- W4290520210 cites W3137299756 @default.
- W4290520210 cites W3139484821 @default.
- W4290520210 cites W3140601897 @default.
- W4290520210 cites W3154900985 @default.
- W4290520210 cites W3157200701 @default.
- W4290520210 cites W3164869162 @default.
- W4290520210 cites W3169554260 @default.
- W4290520210 cites W3191664920 @default.
- W4290520210 cites W3201908633 @default.
- W4290520210 cites W3203569363 @default.
- W4290520210 cites W3208646071 @default.
- W4290520210 cites W3211766580 @default.
- W4290520210 cites W3212797097 @default.
- W4290520210 cites W3216938704 @default.
- W4290520210 cites W4200587593 @default.
- W4290520210 cites W4205111596 @default.
- W4290520210 cites W4205601613 @default.
- W4290520210 cites W4220730052 @default.
- W4290520210 cites W4280630885 @default.
- W4290520210 cites W4281760339 @default.
- W4290520210 cites W4283119348 @default.
- W4290520210 cites W4283158492 @default.
- W4290520210 cites W4285600848 @default.
- W4290520210 doi "https://doi.org/10.3390/ijerph19159695" @default.
- W4290520210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35955051" @default.
- W4290520210 hasPublicationYear "2022" @default.
- W4290520210 type Work @default.
- W4290520210 citedByCount "4" @default.
- W4290520210 countsByYear W42905202102022 @default.
- W4290520210 countsByYear W42905202102023 @default.
- W4290520210 crossrefType "journal-article" @default.
- W4290520210 hasAuthorship W4290520210A5008352499 @default.
- W4290520210 hasAuthorship W4290520210A5040197354 @default.
- W4290520210 hasAuthorship W4290520210A5053176757 @default.
- W4290520210 hasAuthorship W4290520210A5061517602 @default.
- W4290520210 hasAuthorship W4290520210A5065276883 @default.
- W4290520210 hasAuthorship W4290520210A5074164168 @default.
- W4290520210 hasAuthorship W4290520210A5077509013 @default.
- W4290520210 hasAuthorship W4290520210A5082292122 @default.
- W4290520210 hasAuthorship W4290520210A5087313412 @default.
- W4290520210 hasAuthorship W4290520210A5090597943 @default.
- W4290520210 hasBestOaLocation W42905202101 @default.