Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290659262> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4290659262 abstract "Abstract Using a technology known as deep learning, which involves classifying photos based on the data they contain, it is possible to detect images, such as tumors and other signs. Because of the scarcity of pathologists and the growing number of patients with breast cancer, the manual numeration of biopsy echantillons must be mechanized (CS). To rectify the histopathological images of malignant tissue, preliminary study is required, which can be done utilizing BreaKHis' free database of data. An approach based on isolated image fragments is proposed, with the final categorization determined by an interconnected network of neurons (CNN) and a final combination of these pieces. Because of its unique architecture, capacity to recognize speech, identify objects, and analyze signals, as well as the popularity of neural language processing, the CNN is attracting increasing interest from industry and researchers. The employment of transfer learning methods is a problem with tiny collections of medical data. To improve the classification of defamatory and obscene photos, this article recommends integrating the impacts of many resolutions. In order to better depict the entering image's texture, many essential phases in CNN development are also used. Maintain a safe distance from the model's customization. Traditional CNN development may become more complex and expensive as a result. The simulation results achieved by running CNN in MATLAB outperform other artificial intelligence (AI) models recently published that used hand-crafted texture descriptors. With this in mind, we looked at all of CNN's possible combinations and discovered a technique to boost the execution rate by a little amount." @default.
- W4290659262 created "2022-08-08" @default.
- W4290659262 creator A5020562052 @default.
- W4290659262 creator A5022583225 @default.
- W4290659262 creator A5022859216 @default.
- W4290659262 creator A5078193393 @default.
- W4290659262 date "2022-08-08" @default.
- W4290659262 modified "2023-09-23" @default.
- W4290659262 title "Detection of Breast Cancer Images Based on Transfer and Deep Learning Models" @default.
- W4290659262 cites W2056499382 @default.
- W4290659262 cites W2084658294 @default.
- W4290659262 cites W2147800946 @default.
- W4290659262 cites W2158275940 @default.
- W4290659262 cites W2163922914 @default.
- W4290659262 cites W2344480160 @default.
- W4290659262 cites W2620578070 @default.
- W4290659262 cites W2801370692 @default.
- W4290659262 cites W2802046832 @default.
- W4290659262 cites W2890922166 @default.
- W4290659262 cites W2914010220 @default.
- W4290659262 cites W2928559779 @default.
- W4290659262 cites W2949444326 @default.
- W4290659262 doi "https://doi.org/10.21203/rs.3.rs-1926151/v1" @default.
- W4290659262 hasPublicationYear "2022" @default.
- W4290659262 type Work @default.
- W4290659262 citedByCount "0" @default.
- W4290659262 crossrefType "posted-content" @default.
- W4290659262 hasAuthorship W4290659262A5020562052 @default.
- W4290659262 hasAuthorship W4290659262A5022583225 @default.
- W4290659262 hasAuthorship W4290659262A5022859216 @default.
- W4290659262 hasAuthorship W4290659262A5078193393 @default.
- W4290659262 hasBestOaLocation W42906592621 @default.
- W4290659262 hasConcept C108583219 @default.
- W4290659262 hasConcept C119857082 @default.
- W4290659262 hasConcept C136764020 @default.
- W4290659262 hasConcept C150899416 @default.
- W4290659262 hasConcept C153180895 @default.
- W4290659262 hasConcept C154945302 @default.
- W4290659262 hasConcept C183003079 @default.
- W4290659262 hasConcept C41008148 @default.
- W4290659262 hasConcept C81363708 @default.
- W4290659262 hasConcept C94124525 @default.
- W4290659262 hasConceptScore W4290659262C108583219 @default.
- W4290659262 hasConceptScore W4290659262C119857082 @default.
- W4290659262 hasConceptScore W4290659262C136764020 @default.
- W4290659262 hasConceptScore W4290659262C150899416 @default.
- W4290659262 hasConceptScore W4290659262C153180895 @default.
- W4290659262 hasConceptScore W4290659262C154945302 @default.
- W4290659262 hasConceptScore W4290659262C183003079 @default.
- W4290659262 hasConceptScore W4290659262C41008148 @default.
- W4290659262 hasConceptScore W4290659262C81363708 @default.
- W4290659262 hasConceptScore W4290659262C94124525 @default.
- W4290659262 hasLocation W42906592621 @default.
- W4290659262 hasOpenAccess W4290659262 @default.
- W4290659262 hasPrimaryLocation W42906592621 @default.
- W4290659262 hasRelatedWork W2738221750 @default.
- W4290659262 hasRelatedWork W2997709384 @default.
- W4290659262 hasRelatedWork W3018421652 @default.
- W4290659262 hasRelatedWork W3021430260 @default.
- W4290659262 hasRelatedWork W3091976719 @default.
- W4290659262 hasRelatedWork W3108842824 @default.
- W4290659262 hasRelatedWork W3166467183 @default.
- W4290659262 hasRelatedWork W3189091156 @default.
- W4290659262 hasRelatedWork W3192840557 @default.
- W4290659262 hasRelatedWork W4285195761 @default.
- W4290659262 isParatext "false" @default.
- W4290659262 isRetracted "false" @default.
- W4290659262 workType "article" @default.