Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290674673> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4290674673 endingPage "13" @default.
- W4290674673 startingPage "1" @default.
- W4290674673 abstract "The purposes are to recognize and classify different music characteristics and strengthen the copyright protection system for original digital music in the big data era. Deep learning (DL) and blockchain technology are applied and researched herein. Based on CNN (Convolutional Neural Network), a music recognition method combined with hashing learning is proposed. The error generated when outputting the binary hash code is considered, and the semantic similarity of the hash code is ensured. Besides, the application of blockchain technology in the current intellectual property protection in original music is discussed. According to digital music property rights protection needs, the system is divided into modules, and its functions are designed. The system ensures its various functions by applying the application protocol designed in the Algor and network. In the experiments, the MagnaTagATune dataset is selected to verify the performance of the proposed CRNNH (Convolutional Recurrent Neural Network Hashing) algorithm. The algorithm shows the best music recognition performance under different bit numbers. When the number of connections is about 100, the QPS value of the blockchain-based music property rights protection system can be stabilized at about 20,000. At any number of threads, the system pressure will increase dramatically with the increase in the number of analog connections. The music recognition algorithm based on DL and hash method discussed is of great significance in improving the classification accuracy of music recognition. The application of blockchain technology in the copyright protection platform of original music works can protect the copyright of digital music and ensure the operation performance of the system." @default.
- W4290674673 created "2022-08-08" @default.
- W4290674673 creator A5052732634 @default.
- W4290674673 creator A5053892913 @default.
- W4290674673 creator A5054896959 @default.
- W4290674673 creator A5059365849 @default.
- W4290674673 date "2022-08-08" @default.
- W4290674673 modified "2023-10-18" @default.
- W4290674673 title "Music Recognition Using Blockchain Technology and Deep Learning" @default.
- W4290674673 cites W2026430219 @default.
- W4290674673 cites W2419426670 @default.
- W4290674673 cites W2560963696 @default.
- W4290674673 cites W2563031223 @default.
- W4290674673 cites W2621122741 @default.
- W4290674673 cites W2756845867 @default.
- W4290674673 cites W2767332594 @default.
- W4290674673 cites W2776461464 @default.
- W4290674673 cites W2796517058 @default.
- W4290674673 cites W2911484868 @default.
- W4290674673 cites W2939218774 @default.
- W4290674673 cites W2954161205 @default.
- W4290674673 cites W2972819746 @default.
- W4290674673 cites W2979656080 @default.
- W4290674673 cites W2981319169 @default.
- W4290674673 cites W3080313270 @default.
- W4290674673 cites W3087507465 @default.
- W4290674673 cites W3087638864 @default.
- W4290674673 cites W3093693688 @default.
- W4290674673 cites W3098670224 @default.
- W4290674673 cites W3155193052 @default.
- W4290674673 cites W4236261609 @default.
- W4290674673 doi "https://doi.org/10.1155/2022/7025338" @default.
- W4290674673 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35978901" @default.
- W4290674673 hasPublicationYear "2022" @default.
- W4290674673 type Work @default.
- W4290674673 citedByCount "0" @default.
- W4290674673 crossrefType "journal-article" @default.
- W4290674673 hasAuthorship W4290674673A5052732634 @default.
- W4290674673 hasAuthorship W4290674673A5053892913 @default.
- W4290674673 hasAuthorship W4290674673A5054896959 @default.
- W4290674673 hasAuthorship W4290674673A5059365849 @default.
- W4290674673 hasBestOaLocation W42906746731 @default.
- W4290674673 hasConcept C108583219 @default.
- W4290674673 hasConcept C111472728 @default.
- W4290674673 hasConcept C138885662 @default.
- W4290674673 hasConcept C154945302 @default.
- W4290674673 hasConcept C177264268 @default.
- W4290674673 hasConcept C189950617 @default.
- W4290674673 hasConcept C199360897 @default.
- W4290674673 hasConcept C2776760102 @default.
- W4290674673 hasConcept C38652104 @default.
- W4290674673 hasConcept C41008148 @default.
- W4290674673 hasConcept C64922751 @default.
- W4290674673 hasConcept C81363708 @default.
- W4290674673 hasConcept C84462506 @default.
- W4290674673 hasConcept C87687168 @default.
- W4290674673 hasConcept C9390403 @default.
- W4290674673 hasConcept C99138194 @default.
- W4290674673 hasConceptScore W4290674673C108583219 @default.
- W4290674673 hasConceptScore W4290674673C111472728 @default.
- W4290674673 hasConceptScore W4290674673C138885662 @default.
- W4290674673 hasConceptScore W4290674673C154945302 @default.
- W4290674673 hasConceptScore W4290674673C177264268 @default.
- W4290674673 hasConceptScore W4290674673C189950617 @default.
- W4290674673 hasConceptScore W4290674673C199360897 @default.
- W4290674673 hasConceptScore W4290674673C2776760102 @default.
- W4290674673 hasConceptScore W4290674673C38652104 @default.
- W4290674673 hasConceptScore W4290674673C41008148 @default.
- W4290674673 hasConceptScore W4290674673C64922751 @default.
- W4290674673 hasConceptScore W4290674673C81363708 @default.
- W4290674673 hasConceptScore W4290674673C84462506 @default.
- W4290674673 hasConceptScore W4290674673C87687168 @default.
- W4290674673 hasConceptScore W4290674673C9390403 @default.
- W4290674673 hasConceptScore W4290674673C99138194 @default.
- W4290674673 hasFunder F4320322217 @default.
- W4290674673 hasLocation W42906746731 @default.
- W4290674673 hasLocation W42906746732 @default.
- W4290674673 hasLocation W42906746733 @default.
- W4290674673 hasOpenAccess W4290674673 @default.
- W4290674673 hasPrimaryLocation W42906746731 @default.
- W4290674673 hasRelatedWork W2731899572 @default.
- W4290674673 hasRelatedWork W2999805992 @default.
- W4290674673 hasRelatedWork W3011074480 @default.
- W4290674673 hasRelatedWork W3116150086 @default.
- W4290674673 hasRelatedWork W3133861977 @default.
- W4290674673 hasRelatedWork W3192840557 @default.
- W4290674673 hasRelatedWork W4200173597 @default.
- W4290674673 hasRelatedWork W4291897433 @default.
- W4290674673 hasRelatedWork W4312417841 @default.
- W4290674673 hasRelatedWork W4321369474 @default.
- W4290674673 hasVolume "2022" @default.
- W4290674673 isParatext "false" @default.
- W4290674673 isRetracted "false" @default.
- W4290674673 workType "article" @default.