Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290694750> ?p ?o ?g. }
- W4290694750 endingPage "11" @default.
- W4290694750 startingPage "1" @default.
- W4290694750 abstract "One of the main reasons for accidents among workers is harmful gas leakage. Many people die in chemical industries and their surrounding areas. The present invention is responsible for monitoring and controlling hazardous toxic gases like nitrogen dioxide (NO2), carbon monoxide, ozone (O3), sulfur dioxide (SO2), LPG, hydrocarbon gases, silicones, hydrocarbons, alcohol, CH4, hexane, benzine, as well as environmental conditions, such as temperature and relative humidity to prevent industrial accidents. The Arduino UNO R3 board is used as the central microcontroller. It is connected to the Cloud via AQ3 sensor, Minipid 2 HS PID sensor, IR5500 open path infrared gas detector, DHT11 Temperature and Humidity Sensor, MQ3 sensor, and ESP8266 and WIFI Module, which can store real-time sensor data and send alert messages to the industry’s safety control board. Machine learning and artificial intelligence will be used to make an intelligent prediction (AI). The information gathered will be examined in real-time. The real-time data provided through the sensor can be accessed worldwide. Sensor data quality is critical in the Internet of Things (IoT) applications because poor data quality renders them useless. Error detection in sensor data improves the IoT-based toxic gas monitoring, controlling, and prediction system. Live data from sensors or datasets should be analyzed properly using appropriate techniques. Hence, hybrid hidden Markov and artificial intelligence models are applied as an error detection technique in the sensor dataset. This technique outperformed the dataset gas sensor array under dynamic gas mixtures and lived data. Our method outperformed harmful gas monitoring and error detection in sensor datasets compared to other existing technologies. The hybrid HMM and ANN fault detection methods performed well on the datasets and produced 0.01% false positive rate." @default.
- W4290694750 created "2022-08-09" @default.
- W4290694750 creator A5001445896 @default.
- W4290694750 creator A5002455070 @default.
- W4290694750 creator A5009990000 @default.
- W4290694750 creator A5034549025 @default.
- W4290694750 creator A5036380614 @default.
- W4290694750 creator A5052966761 @default.
- W4290694750 creator A5062112153 @default.
- W4290694750 creator A5071901837 @default.
- W4290694750 date "2022-08-08" @default.
- W4290694750 modified "2023-10-17" @default.
- W4290694750 title "IoT-Based Harmful Toxic Gases Monitoring and Fault Detection on the Sensor Dataset Using Deep Learning Techniques" @default.
- W4290694750 cites W1551688898 @default.
- W4290694750 cites W2003827925 @default.
- W4290694750 cites W2085337500 @default.
- W4290694750 cites W2090841340 @default.
- W4290694750 cites W2101135896 @default.
- W4290694750 cites W2138426286 @default.
- W4290694750 cites W2155879210 @default.
- W4290694750 cites W2532883992 @default.
- W4290694750 cites W2913497771 @default.
- W4290694750 cites W2946339517 @default.
- W4290694750 cites W2953049787 @default.
- W4290694750 cites W3004042885 @default.
- W4290694750 cites W3048453447 @default.
- W4290694750 cites W3109610502 @default.
- W4290694750 cites W3132109148 @default.
- W4290694750 cites W3164026009 @default.
- W4290694750 cites W3184588947 @default.
- W4290694750 cites W3197762606 @default.
- W4290694750 cites W3201065328 @default.
- W4290694750 cites W3204409755 @default.
- W4290694750 cites W3209859699 @default.
- W4290694750 cites W4200014858 @default.
- W4290694750 cites W4200552753 @default.
- W4290694750 cites W4205651851 @default.
- W4290694750 cites W4211086064 @default.
- W4290694750 cites W4224292348 @default.
- W4290694750 cites W4281865819 @default.
- W4290694750 cites W4283750695 @default.
- W4290694750 cites W2024568702 @default.
- W4290694750 doi "https://doi.org/10.1155/2022/7516328" @default.
- W4290694750 hasPublicationYear "2022" @default.
- W4290694750 type Work @default.
- W4290694750 citedByCount "3" @default.
- W4290694750 countsByYear W42906947502023 @default.
- W4290694750 crossrefType "journal-article" @default.
- W4290694750 hasAuthorship W4290694750A5001445896 @default.
- W4290694750 hasAuthorship W4290694750A5002455070 @default.
- W4290694750 hasAuthorship W4290694750A5009990000 @default.
- W4290694750 hasAuthorship W4290694750A5034549025 @default.
- W4290694750 hasAuthorship W4290694750A5036380614 @default.
- W4290694750 hasAuthorship W4290694750A5052966761 @default.
- W4290694750 hasAuthorship W4290694750A5062112153 @default.
- W4290694750 hasAuthorship W4290694750A5071901837 @default.
- W4290694750 hasBestOaLocation W42906947501 @default.
- W4290694750 hasConcept C113803762 @default.
- W4290694750 hasConcept C119857082 @default.
- W4290694750 hasConcept C127413603 @default.
- W4290694750 hasConcept C136501162 @default.
- W4290694750 hasConcept C149635348 @default.
- W4290694750 hasConcept C171146098 @default.
- W4290694750 hasConcept C173018170 @default.
- W4290694750 hasConcept C178790620 @default.
- W4290694750 hasConcept C185592680 @default.
- W4290694750 hasConcept C199360897 @default.
- W4290694750 hasConcept C24590314 @default.
- W4290694750 hasConcept C2776666747 @default.
- W4290694750 hasConcept C2777904410 @default.
- W4290694750 hasConcept C31258907 @default.
- W4290694750 hasConcept C41008148 @default.
- W4290694750 hasConcept C530467964 @default.
- W4290694750 hasConcept C66251956 @default.
- W4290694750 hasConcept C79403827 @default.
- W4290694750 hasConcept C81860439 @default.
- W4290694750 hasConceptScore W4290694750C113803762 @default.
- W4290694750 hasConceptScore W4290694750C119857082 @default.
- W4290694750 hasConceptScore W4290694750C127413603 @default.
- W4290694750 hasConceptScore W4290694750C136501162 @default.
- W4290694750 hasConceptScore W4290694750C149635348 @default.
- W4290694750 hasConceptScore W4290694750C171146098 @default.
- W4290694750 hasConceptScore W4290694750C173018170 @default.
- W4290694750 hasConceptScore W4290694750C178790620 @default.
- W4290694750 hasConceptScore W4290694750C185592680 @default.
- W4290694750 hasConceptScore W4290694750C199360897 @default.
- W4290694750 hasConceptScore W4290694750C24590314 @default.
- W4290694750 hasConceptScore W4290694750C2776666747 @default.
- W4290694750 hasConceptScore W4290694750C2777904410 @default.
- W4290694750 hasConceptScore W4290694750C31258907 @default.
- W4290694750 hasConceptScore W4290694750C41008148 @default.
- W4290694750 hasConceptScore W4290694750C530467964 @default.
- W4290694750 hasConceptScore W4290694750C66251956 @default.
- W4290694750 hasConceptScore W4290694750C79403827 @default.
- W4290694750 hasConceptScore W4290694750C81860439 @default.
- W4290694750 hasLocation W42906947501 @default.
- W4290694750 hasOpenAccess W4290694750 @default.
- W4290694750 hasPrimaryLocation W42906947501 @default.