Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290703643> ?p ?o ?g. }
- W4290703643 endingPage "1376" @default.
- W4290703643 startingPage "1350" @default.
- W4290703643 abstract "Most deep learning methods in hyperspectral image (HSI) classification use local learning methods, where overlapping areas between pixels can lead to spatial redundancy and higher computational cost. This paper proposes an efficient global learning (EGL) framework for HSI classification. The EGL framework was composed of universal global random stratification (UGSS) sampling strategy and a classification model BrsNet. The UGSS sampling strategy was used to solve the problem of insufficient gradient variance resulted from limited training samples. To fully extract and explore the most distinguishing feature representation, we used the modified linear bottleneck structure with spectral attention as a part of the BrsNet network to extract spectral spatial information. As a type of spectral attention, the shuffle spectral attention module screened important spectral features from the rich spectral information of HSI to improve the classification accuracy of the model. Meanwhile, we also designed a double branch structure in BrsNet that extracted more abundant spatial information from local and global perspectives to increase the performance of our classification framework. Experiments were conducted on three famous datasets, IP, PU, and SA. Compared with other classification methods, our proposed method produced competitive results in training time, while having a greater advantage in test time." @default.
- W4290703643 created "2022-08-09" @default.
- W4290703643 creator A5037187271 @default.
- W4290703643 creator A5048973422 @default.
- W4290703643 creator A5063881243 @default.
- W4290703643 creator A5071670987 @default.
- W4290703643 creator A5089726646 @default.
- W4290703643 creator A5089748607 @default.
- W4290703643 date "2022-08-08" @default.
- W4290703643 modified "2023-09-27" @default.
- W4290703643 title "An effective global learning framework for hyperspectral image classification based on encoder-decoder architecture" @default.
- W4290703643 cites W1419362381 @default.
- W4290703643 cites W1521436688 @default.
- W4290703643 cites W1585144779 @default.
- W4290703643 cites W1901129140 @default.
- W4290703643 cites W1903029394 @default.
- W4290703643 cites W1976359033 @default.
- W4290703643 cites W1980511770 @default.
- W4290703643 cites W1994168328 @default.
- W4290703643 cites W1994616650 @default.
- W4290703643 cites W2018825256 @default.
- W4290703643 cites W2021455849 @default.
- W4290703643 cites W2048644791 @default.
- W4290703643 cites W2052160904 @default.
- W4290703643 cites W2097900616 @default.
- W4290703643 cites W2098057602 @default.
- W4290703643 cites W2136251662 @default.
- W4290703643 cites W2158400785 @default.
- W4290703643 cites W2161673872 @default.
- W4290703643 cites W2167894638 @default.
- W4290703643 cites W2412782625 @default.
- W4290703643 cites W2514028694 @default.
- W4290703643 cites W2567289819 @default.
- W4290703643 cites W2732412926 @default.
- W4290703643 cites W2752782242 @default.
- W4290703643 cites W2764276316 @default.
- W4290703643 cites W2793941577 @default.
- W4290703643 cites W2822065499 @default.
- W4290703643 cites W2894337953 @default.
- W4290703643 cites W2901384620 @default.
- W4290703643 cites W2954958556 @default.
- W4290703643 cites W2962971773 @default.
- W4290703643 cites W2963091558 @default.
- W4290703643 cites W2963163009 @default.
- W4290703643 cites W2964309882 @default.
- W4290703643 cites W2981689412 @default.
- W4290703643 cites W2987619624 @default.
- W4290703643 cites W3034552520 @default.
- W4290703643 cites W3066454894 @default.
- W4290703643 cites W3092916389 @default.
- W4290703643 cites W3100826601 @default.
- W4290703643 cites W3114720220 @default.
- W4290703643 cites W3125860323 @default.
- W4290703643 cites W3170742420 @default.
- W4290703643 cites W3205035497 @default.
- W4290703643 cites W4250482878 @default.
- W4290703643 cites W4285187901 @default.
- W4290703643 cites W4289820973 @default.
- W4290703643 doi "https://doi.org/10.1080/17538947.2022.2108922" @default.
- W4290703643 hasPublicationYear "2022" @default.
- W4290703643 type Work @default.
- W4290703643 citedByCount "0" @default.
- W4290703643 crossrefType "journal-article" @default.
- W4290703643 hasAuthorship W4290703643A5037187271 @default.
- W4290703643 hasAuthorship W4290703643A5048973422 @default.
- W4290703643 hasAuthorship W4290703643A5063881243 @default.
- W4290703643 hasAuthorship W4290703643A5071670987 @default.
- W4290703643 hasAuthorship W4290703643A5089726646 @default.
- W4290703643 hasAuthorship W4290703643A5089748607 @default.
- W4290703643 hasConcept C111919701 @default.
- W4290703643 hasConcept C115961682 @default.
- W4290703643 hasConcept C118505674 @default.
- W4290703643 hasConcept C119857082 @default.
- W4290703643 hasConcept C124101348 @default.
- W4290703643 hasConcept C138885662 @default.
- W4290703643 hasConcept C149635348 @default.
- W4290703643 hasConcept C152124472 @default.
- W4290703643 hasConcept C153180895 @default.
- W4290703643 hasConcept C154945302 @default.
- W4290703643 hasConcept C159078339 @default.
- W4290703643 hasConcept C159620131 @default.
- W4290703643 hasConcept C160633673 @default.
- W4290703643 hasConcept C205649164 @default.
- W4290703643 hasConcept C2776401178 @default.
- W4290703643 hasConcept C2780513914 @default.
- W4290703643 hasConcept C41008148 @default.
- W4290703643 hasConcept C41895202 @default.
- W4290703643 hasConcept C59404180 @default.
- W4290703643 hasConcept C62649853 @default.
- W4290703643 hasConcept C75294576 @default.
- W4290703643 hasConceptScore W4290703643C111919701 @default.
- W4290703643 hasConceptScore W4290703643C115961682 @default.
- W4290703643 hasConceptScore W4290703643C118505674 @default.
- W4290703643 hasConceptScore W4290703643C119857082 @default.
- W4290703643 hasConceptScore W4290703643C124101348 @default.
- W4290703643 hasConceptScore W4290703643C138885662 @default.
- W4290703643 hasConceptScore W4290703643C149635348 @default.
- W4290703643 hasConceptScore W4290703643C152124472 @default.