Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290703827> ?p ?o ?g. }
- W4290703827 endingPage "118430" @default.
- W4290703827 startingPage "118430" @default.
- W4290703827 abstract "As one of the most salient features of China’s economic development, high-speed rail (HSR) is considered to be an attractive target and travel mode for terrorists. Distinguishing potential terrorists from normal passengers is of critical importance to public security, but very challenging because terrorists constitute only a very small fraction of HSR passengers, especially when they can disguise their attributes and behaviors to deceive the classifiers. For this extremely imbalanced classification problem, we propose a novel evolutionary generative adversarial network (GAN) ensemble method, where each GAN in the ensemble simultaneously trains a discriminator to identify abnormal samples from a large number of passenger profiles and trains a generator to produce abnormal samples that are disguised as normal ones in a subspace of the sample space, and the final classifier combines these GANs using an evolutionary fusion method. Experiments on benchmark problems demonstrate that the proposed method has very competitive performance compared to popular imbalanced classifiers. The successful applications in terrorist identification for China Railway also demonstrate the feasibility and effectiveness of our approach." @default.
- W4290703827 created "2022-08-09" @default.
- W4290703827 creator A5019915591 @default.
- W4290703827 creator A5048831651 @default.
- W4290703827 creator A5055361145 @default.
- W4290703827 creator A5077255844 @default.
- W4290703827 creator A5083870757 @default.
- W4290703827 date "2022-12-01" @default.
- W4290703827 modified "2023-09-29" @default.
- W4290703827 title "Evolutionary ensemble generative adversarial learning for identifying terrorists among high-speed rail passengers" @default.
- W4290703827 cites W1984323748 @default.
- W4290703827 cites W1987601350 @default.
- W4290703827 cites W1991509879 @default.
- W4290703827 cites W1992862844 @default.
- W4290703827 cites W2000753909 @default.
- W4290703827 cites W2002967826 @default.
- W4290703827 cites W2015432217 @default.
- W4290703827 cites W2052917584 @default.
- W4290703827 cites W2065806863 @default.
- W4290703827 cites W2068911452 @default.
- W4290703827 cites W2091007025 @default.
- W4290703827 cites W2096451472 @default.
- W4290703827 cites W2099454382 @default.
- W4290703827 cites W2100128988 @default.
- W4290703827 cites W2100495367 @default.
- W4290703827 cites W2104167780 @default.
- W4290703827 cites W2113355293 @default.
- W4290703827 cites W2114935724 @default.
- W4290703827 cites W2119498311 @default.
- W4290703827 cites W2123585184 @default.
- W4290703827 cites W2127662031 @default.
- W4290703827 cites W2149954962 @default.
- W4290703827 cites W2187331135 @default.
- W4290703827 cites W2263289545 @default.
- W4290703827 cites W2278519563 @default.
- W4290703827 cites W2479311926 @default.
- W4290703827 cites W2525305541 @default.
- W4290703827 cites W2588794268 @default.
- W4290703827 cites W2750936674 @default.
- W4290703827 cites W2756182389 @default.
- W4290703827 cites W2771605104 @default.
- W4290703827 cites W2778854158 @default.
- W4290703827 cites W2779931100 @default.
- W4290703827 cites W2783155279 @default.
- W4290703827 cites W2793232926 @default.
- W4290703827 cites W2802240654 @default.
- W4290703827 cites W2802547803 @default.
- W4290703827 cites W2880490707 @default.
- W4290703827 cites W2943921974 @default.
- W4290703827 cites W2965940114 @default.
- W4290703827 cites W2994582374 @default.
- W4290703827 cites W3037563142 @default.
- W4290703827 cites W3046387678 @default.
- W4290703827 cites W3084090090 @default.
- W4290703827 cites W3109901740 @default.
- W4290703827 cites W3111180383 @default.
- W4290703827 cites W3119631648 @default.
- W4290703827 cites W3128971145 @default.
- W4290703827 cites W3189100433 @default.
- W4290703827 cites W3214474910 @default.
- W4290703827 cites W4214519989 @default.
- W4290703827 doi "https://doi.org/10.1016/j.eswa.2022.118430" @default.
- W4290703827 hasPublicationYear "2022" @default.
- W4290703827 type Work @default.
- W4290703827 citedByCount "3" @default.
- W4290703827 countsByYear W42907038272023 @default.
- W4290703827 crossrefType "journal-article" @default.
- W4290703827 hasAuthorship W4290703827A5019915591 @default.
- W4290703827 hasAuthorship W4290703827A5048831651 @default.
- W4290703827 hasAuthorship W4290703827A5055361145 @default.
- W4290703827 hasAuthorship W4290703827A5077255844 @default.
- W4290703827 hasAuthorship W4290703827A5083870757 @default.
- W4290703827 hasConcept C108583219 @default.
- W4290703827 hasConcept C119857082 @default.
- W4290703827 hasConcept C154945302 @default.
- W4290703827 hasConcept C167966045 @default.
- W4290703827 hasConcept C2988773926 @default.
- W4290703827 hasConcept C37736160 @default.
- W4290703827 hasConcept C39890363 @default.
- W4290703827 hasConcept C41008148 @default.
- W4290703827 hasConceptScore W4290703827C108583219 @default.
- W4290703827 hasConceptScore W4290703827C119857082 @default.
- W4290703827 hasConceptScore W4290703827C154945302 @default.
- W4290703827 hasConceptScore W4290703827C167966045 @default.
- W4290703827 hasConceptScore W4290703827C2988773926 @default.
- W4290703827 hasConceptScore W4290703827C37736160 @default.
- W4290703827 hasConceptScore W4290703827C39890363 @default.
- W4290703827 hasConceptScore W4290703827C41008148 @default.
- W4290703827 hasFunder F4320321001 @default.
- W4290703827 hasFunder F4320338464 @default.
- W4290703827 hasLocation W42907038271 @default.
- W4290703827 hasOpenAccess W4290703827 @default.
- W4290703827 hasPrimaryLocation W42907038271 @default.
- W4290703827 hasRelatedWork W2585630030 @default.
- W4290703827 hasRelatedWork W2901368259 @default.
- W4290703827 hasRelatedWork W2951578466 @default.
- W4290703827 hasRelatedWork W2963865839 @default.
- W4290703827 hasRelatedWork W3017161950 @default.