Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290717182> ?p ?o ?g. }
- W4290717182 endingPage "87181" @default.
- W4290717182 startingPage "87168" @default.
- W4290717182 abstract "To date, the novel Coronavirus (SARS-CoV-2) has infected millions and has caused the deaths of thousands of people around the world. At the moment, five antibodies, two from China, two from the U.S., and one from the UK, have already been widely utilized and numerous vaccines are under the trail process. In order to reach herd immunity, around 70% of the population would need to be inoculated. It may take several years to hinder the spread of SARS-CoV-2. Governments and concerned authorities have taken stringent measurements such as enforcing partial, complete, or smart lockdowns, building temporary medical facilities, advocating social distancing, and mandating masks in public as well as setting up awareness campaigns. Furthermore, there have been massive efforts in various research areas and a wide variety of tools, technologies and techniques have been explored and developed to combat the war against this pandemic. Interestingly, machine learning (ML) algorithms and internet of Things (IoTs) technology are the pioneers in this race. Up till now, several real-time and intelligent IoT-based COVID-19 diagnosing, and monitoring systems have been proposed to tackle the pandemic. In this article we have analyzed a wide range of IoTs technologies which can be used in diagnosing and monitoring the infected individuals and hotspot areas. Furthermore, we identify the challenges and also provide our vision about the future research on COVID-19." @default.
- W4290717182 created "2022-08-09" @default.
- W4290717182 creator A5004368871 @default.
- W4290717182 creator A5012673747 @default.
- W4290717182 creator A5023202284 @default.
- W4290717182 creator A5030973943 @default.
- W4290717182 creator A5033102755 @default.
- W4290717182 creator A5039774990 @default.
- W4290717182 creator A5069487101 @default.
- W4290717182 date "2022-01-01" @default.
- W4290717182 modified "2023-10-18" @default.
- W4290717182 title "IoT-Based COVID-19 Diagnosing and Monitoring Systems: A Survey" @default.
- W4290717182 cites W1900048720 @default.
- W4290717182 cites W1950010372 @default.
- W4290717182 cites W2028670183 @default.
- W4290717182 cites W2033453630 @default.
- W4290717182 cites W2041647218 @default.
- W4290717182 cites W2087232152 @default.
- W4290717182 cites W2098882356 @default.
- W4290717182 cites W2302022346 @default.
- W4290717182 cites W2402813224 @default.
- W4290717182 cites W2443322392 @default.
- W4290717182 cites W2468716549 @default.
- W4290717182 cites W2497458316 @default.
- W4290717182 cites W2518596688 @default.
- W4290717182 cites W2530517981 @default.
- W4290717182 cites W2531320996 @default.
- W4290717182 cites W2567312080 @default.
- W4290717182 cites W2572293736 @default.
- W4290717182 cites W2588220790 @default.
- W4290717182 cites W2594260939 @default.
- W4290717182 cites W2596636257 @default.
- W4290717182 cites W2736989748 @default.
- W4290717182 cites W2757864326 @default.
- W4290717182 cites W2768475350 @default.
- W4290717182 cites W2770987547 @default.
- W4290717182 cites W2772327757 @default.
- W4290717182 cites W2772905584 @default.
- W4290717182 cites W2784032686 @default.
- W4290717182 cites W2792479193 @default.
- W4290717182 cites W2809416762 @default.
- W4290717182 cites W2888571403 @default.
- W4290717182 cites W2890349115 @default.
- W4290717182 cites W2899398744 @default.
- W4290717182 cites W2900294441 @default.
- W4290717182 cites W2909104992 @default.
- W4290717182 cites W2914936726 @default.
- W4290717182 cites W2916933545 @default.
- W4290717182 cites W2917388343 @default.
- W4290717182 cites W2917797872 @default.
- W4290717182 cites W2952649530 @default.
- W4290717182 cites W2970457224 @default.
- W4290717182 cites W2982688549 @default.
- W4290717182 cites W3006419170 @default.
- W4290717182 cites W3008928028 @default.
- W4290717182 cites W3010350910 @default.
- W4290717182 cites W3010371473 @default.
- W4290717182 cites W3031396671 @default.
- W4290717182 cites W3034617120 @default.
- W4290717182 cites W3037676165 @default.
- W4290717182 cites W3044806259 @default.
- W4290717182 cites W3046261225 @default.
- W4290717182 cites W3048416409 @default.
- W4290717182 cites W3082280594 @default.
- W4290717182 cites W3087059428 @default.
- W4290717182 cites W3093982442 @default.
- W4290717182 cites W3097274327 @default.
- W4290717182 cites W3097821296 @default.
- W4290717182 cites W3106853296 @default.
- W4290717182 cites W3109495579 @default.
- W4290717182 cites W3110689439 @default.
- W4290717182 cites W3112231659 @default.
- W4290717182 cites W3122037590 @default.
- W4290717182 cites W3123597910 @default.
- W4290717182 cites W3155935317 @default.
- W4290717182 cites W4205719129 @default.
- W4290717182 doi "https://doi.org/10.1109/access.2022.3197164" @default.
- W4290717182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36345377" @default.
- W4290717182 hasPublicationYear "2022" @default.
- W4290717182 type Work @default.
- W4290717182 citedByCount "3" @default.
- W4290717182 countsByYear W42907171822022 @default.
- W4290717182 countsByYear W42907171822023 @default.
- W4290717182 crossrefType "journal-article" @default.
- W4290717182 hasAuthorship W4290717182A5004368871 @default.
- W4290717182 hasAuthorship W4290717182A5012673747 @default.
- W4290717182 hasAuthorship W4290717182A5023202284 @default.
- W4290717182 hasAuthorship W4290717182A5030973943 @default.
- W4290717182 hasAuthorship W4290717182A5033102755 @default.
- W4290717182 hasAuthorship W4290717182A5039774990 @default.
- W4290717182 hasAuthorship W4290717182A5069487101 @default.
- W4290717182 hasBestOaLocation W42907171821 @default.
- W4290717182 hasConcept C106192422 @default.
- W4290717182 hasConcept C108827166 @default.
- W4290717182 hasConcept C142724271 @default.
- W4290717182 hasConcept C144133560 @default.
- W4290717182 hasConcept C172656115 @default.
- W4290717182 hasConcept C2522767166 @default.