Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290717189> ?p ?o ?g. }
- W4290717189 endingPage "84243" @default.
- W4290717189 startingPage "84227" @default.
- W4290717189 abstract "This paper aims to develop an evolutionary deep learning based hybrid data driven approach for short term load forecasting (STLF) in the context of Bangladesh. With the lapse of time, the power system is getting complex. Penetration of intermittent renewable energy (RE) into the grid, changing prosumer load pattern with the need of demand side management (DSM) has thrown a challenge for dynamic power system operation and control. Load forecasting plays a significant role in this dynamic operation and control. In addition, it directly affects the future planning of network expansion, unit commitment and economic energy mix for power market. Day ahead short-term forecasting is very crucial for day to day operation. As such, various conventional and modified methods have been used over time for short-term prediction. Nevertheless, the existing approaches like age old statistical methods, artificial intelligence (AI), machine learning (ML), deep learning (DL) techniques alone cannot provide effective accuracy all the time. Hence, an integrated genetic algorithm (GA)-bidirectional gated recurrent unit (Bi-GRU) hybrid data driven technique (GA-BiGRU) is proposed in this work. The developed method is validated in Bangladesh power system (BPS) network by providing day ahead forecasting of electrical load of the whole country. Besides, the performance of the prediction model is compared with some existing approaches such as long short-term memory network (LSTM), gated recurrent unit (GRU) and integrated genetic algorithm-gated recurrent unit (GA-GRU) in terms of mean absolute performance error (MAPE) and root mean squared error (RMSE). The outcome gives an indication of better forecasting accuracy of proposed GA-BiGRU evolutionary DL technique compared to others." @default.
- W4290717189 created "2022-08-09" @default.
- W4290717189 creator A5003046822 @default.
- W4290717189 creator A5014265935 @default.
- W4290717189 creator A5025887101 @default.
- W4290717189 creator A5077143986 @default.
- W4290717189 date "2022-01-01" @default.
- W4290717189 modified "2023-09-25" @default.
- W4290717189 title "A Data Driven Approach for Day Ahead Short Term Load Forecasting" @default.
- W4290717189 cites W2017387812 @default.
- W4290717189 cites W2134086789 @default.
- W4290717189 cites W2512630627 @default.
- W4290717189 cites W2552991604 @default.
- W4290717189 cites W2586920168 @default.
- W4290717189 cites W2597866042 @default.
- W4290717189 cites W2748388862 @default.
- W4290717189 cites W2788553534 @default.
- W4290717189 cites W2802544663 @default.
- W4290717189 cites W2808625514 @default.
- W4290717189 cites W2903969466 @default.
- W4290717189 cites W2905828856 @default.
- W4290717189 cites W2906865296 @default.
- W4290717189 cites W2920819152 @default.
- W4290717189 cites W2946527326 @default.
- W4290717189 cites W2954123905 @default.
- W4290717189 cites W2969688201 @default.
- W4290717189 cites W2996374824 @default.
- W4290717189 cites W3006049879 @default.
- W4290717189 cites W3006158898 @default.
- W4290717189 cites W3008533347 @default.
- W4290717189 cites W3011149747 @default.
- W4290717189 cites W3011349791 @default.
- W4290717189 cites W3113264736 @default.
- W4290717189 cites W3129762955 @default.
- W4290717189 cites W3174103894 @default.
- W4290717189 cites W3180293405 @default.
- W4290717189 cites W3184972196 @default.
- W4290717189 cites W3186937622 @default.
- W4290717189 cites W3217606401 @default.
- W4290717189 doi "https://doi.org/10.1109/access.2022.3197609" @default.
- W4290717189 hasPublicationYear "2022" @default.
- W4290717189 type Work @default.
- W4290717189 citedByCount "3" @default.
- W4290717189 countsByYear W42907171892022 @default.
- W4290717189 countsByYear W42907171892023 @default.
- W4290717189 crossrefType "journal-article" @default.
- W4290717189 hasAuthorship W4290717189A5003046822 @default.
- W4290717189 hasAuthorship W4290717189A5014265935 @default.
- W4290717189 hasAuthorship W4290717189A5025887101 @default.
- W4290717189 hasAuthorship W4290717189A5077143986 @default.
- W4290717189 hasBestOaLocation W42907171891 @default.
- W4290717189 hasConcept C10558101 @default.
- W4290717189 hasConcept C105795698 @default.
- W4290717189 hasConcept C119599485 @default.
- W4290717189 hasConcept C119857082 @default.
- W4290717189 hasConcept C121332964 @default.
- W4290717189 hasConcept C127413603 @default.
- W4290717189 hasConcept C139945424 @default.
- W4290717189 hasConcept C150217764 @default.
- W4290717189 hasConcept C151730666 @default.
- W4290717189 hasConcept C154945302 @default.
- W4290717189 hasConcept C163258240 @default.
- W4290717189 hasConcept C2779343474 @default.
- W4290717189 hasConcept C33923547 @default.
- W4290717189 hasConcept C41008148 @default.
- W4290717189 hasConcept C50644808 @default.
- W4290717189 hasConcept C61797465 @default.
- W4290717189 hasConcept C62520636 @default.
- W4290717189 hasConcept C86803240 @default.
- W4290717189 hasConcept C8880873 @default.
- W4290717189 hasConcept C89227174 @default.
- W4290717189 hasConceptScore W4290717189C10558101 @default.
- W4290717189 hasConceptScore W4290717189C105795698 @default.
- W4290717189 hasConceptScore W4290717189C119599485 @default.
- W4290717189 hasConceptScore W4290717189C119857082 @default.
- W4290717189 hasConceptScore W4290717189C121332964 @default.
- W4290717189 hasConceptScore W4290717189C127413603 @default.
- W4290717189 hasConceptScore W4290717189C139945424 @default.
- W4290717189 hasConceptScore W4290717189C150217764 @default.
- W4290717189 hasConceptScore W4290717189C151730666 @default.
- W4290717189 hasConceptScore W4290717189C154945302 @default.
- W4290717189 hasConceptScore W4290717189C163258240 @default.
- W4290717189 hasConceptScore W4290717189C2779343474 @default.
- W4290717189 hasConceptScore W4290717189C33923547 @default.
- W4290717189 hasConceptScore W4290717189C41008148 @default.
- W4290717189 hasConceptScore W4290717189C50644808 @default.
- W4290717189 hasConceptScore W4290717189C61797465 @default.
- W4290717189 hasConceptScore W4290717189C62520636 @default.
- W4290717189 hasConceptScore W4290717189C86803240 @default.
- W4290717189 hasConceptScore W4290717189C8880873 @default.
- W4290717189 hasConceptScore W4290717189C89227174 @default.
- W4290717189 hasLocation W42907171891 @default.
- W4290717189 hasLocation W42907171892 @default.
- W4290717189 hasOpenAccess W4290717189 @default.
- W4290717189 hasPrimaryLocation W42907171891 @default.
- W4290717189 hasRelatedWork W2059652129 @default.
- W4290717189 hasRelatedWork W2188032833 @default.
- W4290717189 hasRelatedWork W2371877363 @default.