Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290717392> ?p ?o ?g. }
- W4290717392 endingPage "8504" @default.
- W4290717392 startingPage "8491" @default.
- W4290717392 abstract "Software-defined networking (SDN)-based Industrial Internet of Things (IIoT) networks have a centralized controller that is a single attractive target for unauthorized users to attack. Cybersecurity in IIoT networks is becoming the most significant challenge, especially from increasingly sophisticated Distributed Denial-of-Service (DDoS) attacks. This situation necessitates efficient approaches to mitigate recent attacks following the incompetence of existing techniques that focus more on DDoS detection. Most existing DDoS detection capabilities are computationally complex and are no longer efficient enough to protect against DDoS attacks. Thus, the need for a low-cost approach for DDoS attack classification. This study presents a competent feature selection method extreme gradient boosting (XGBoost) for determining the most relevant data features with a hybrid convolutional neural network and long short-term memory (CNN-LSTM) for DDoS attack classification. The proposed model evaluated the CICDDoS2019 data set with improved accuracy and low-complexity capability for low latency IIoT requirements. Performance results show that the proposed model achieves a high accuracy of 99.50% with a time cost of 0.179 ms." @default.
- W4290717392 created "2022-08-09" @default.
- W4290717392 creator A5018695820 @default.
- W4290717392 creator A5076492731 @default.
- W4290717392 creator A5086692154 @default.
- W4290717392 creator A5087812213 @default.
- W4290717392 creator A5091866915 @default.
- W4290717392 date "2023-05-15" @default.
- W4290717392 modified "2023-10-16" @default.
- W4290717392 title "An Efficient Hybrid-DNN for DDoS Detection and Classification in Software-Defined IIoT Networks" @default.
- W4290717392 cites W2591712613 @default.
- W4290717392 cites W2623554202 @default.
- W4290717392 cites W2886128149 @default.
- W4290717392 cites W2892989257 @default.
- W4290717392 cites W2901815443 @default.
- W4290717392 cites W2945639270 @default.
- W4290717392 cites W2956030019 @default.
- W4290717392 cites W2958285686 @default.
- W4290717392 cites W2971942666 @default.
- W4290717392 cites W2981025625 @default.
- W4290717392 cites W2982682021 @default.
- W4290717392 cites W3008535060 @default.
- W4290717392 cites W3011928198 @default.
- W4290717392 cites W3024476475 @default.
- W4290717392 cites W3043320740 @default.
- W4290717392 cites W3047132966 @default.
- W4290717392 cites W3084346886 @default.
- W4290717392 cites W3095075163 @default.
- W4290717392 cites W3102091066 @default.
- W4290717392 cites W3112732217 @default.
- W4290717392 cites W3121731896 @default.
- W4290717392 cites W3123817474 @default.
- W4290717392 cites W3125078888 @default.
- W4290717392 cites W3136030217 @default.
- W4290717392 cites W3136238191 @default.
- W4290717392 cites W3153313568 @default.
- W4290717392 cites W3166227554 @default.
- W4290717392 cites W3177063771 @default.
- W4290717392 cites W3179240416 @default.
- W4290717392 cites W3184553632 @default.
- W4290717392 cites W3185359994 @default.
- W4290717392 cites W3190317124 @default.
- W4290717392 cites W3191493850 @default.
- W4290717392 cites W3198147008 @default.
- W4290717392 cites W3199886050 @default.
- W4290717392 cites W3201542739 @default.
- W4290717392 cites W3206821628 @default.
- W4290717392 cites W3206953734 @default.
- W4290717392 cites W3209469313 @default.
- W4290717392 cites W3214029542 @default.
- W4290717392 cites W3214146295 @default.
- W4290717392 cites W4200206556 @default.
- W4290717392 cites W4200562485 @default.
- W4290717392 cites W4206986961 @default.
- W4290717392 cites W4211050110 @default.
- W4290717392 cites W4211136388 @default.
- W4290717392 cites W4211210065 @default.
- W4290717392 doi "https://doi.org/10.1109/jiot.2022.3196942" @default.
- W4290717392 hasPublicationYear "2023" @default.
- W4290717392 type Work @default.
- W4290717392 citedByCount "14" @default.
- W4290717392 countsByYear W42907173922022 @default.
- W4290717392 countsByYear W42907173922023 @default.
- W4290717392 crossrefType "journal-article" @default.
- W4290717392 hasAuthorship W4290717392A5018695820 @default.
- W4290717392 hasAuthorship W4290717392A5076492731 @default.
- W4290717392 hasAuthorship W4290717392A5086692154 @default.
- W4290717392 hasAuthorship W4290717392A5087812213 @default.
- W4290717392 hasAuthorship W4290717392A5091866915 @default.
- W4290717392 hasConcept C110875604 @default.
- W4290717392 hasConcept C119857082 @default.
- W4290717392 hasConcept C120314980 @default.
- W4290717392 hasConcept C120865594 @default.
- W4290717392 hasConcept C136764020 @default.
- W4290717392 hasConcept C154945302 @default.
- W4290717392 hasConcept C31258907 @default.
- W4290717392 hasConcept C38652104 @default.
- W4290717392 hasConcept C38822068 @default.
- W4290717392 hasConcept C41008148 @default.
- W4290717392 hasConcept C43639116 @default.
- W4290717392 hasConcept C77270119 @default.
- W4290717392 hasConcept C81363708 @default.
- W4290717392 hasConceptScore W4290717392C110875604 @default.
- W4290717392 hasConceptScore W4290717392C119857082 @default.
- W4290717392 hasConceptScore W4290717392C120314980 @default.
- W4290717392 hasConceptScore W4290717392C120865594 @default.
- W4290717392 hasConceptScore W4290717392C136764020 @default.
- W4290717392 hasConceptScore W4290717392C154945302 @default.
- W4290717392 hasConceptScore W4290717392C31258907 @default.
- W4290717392 hasConceptScore W4290717392C38652104 @default.
- W4290717392 hasConceptScore W4290717392C38822068 @default.
- W4290717392 hasConceptScore W4290717392C41008148 @default.
- W4290717392 hasConceptScore W4290717392C43639116 @default.
- W4290717392 hasConceptScore W4290717392C77270119 @default.
- W4290717392 hasConceptScore W4290717392C81363708 @default.
- W4290717392 hasFunder F4320322120 @default.
- W4290717392 hasIssue "10" @default.
- W4290717392 hasLocation W42907173921 @default.