Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290729105> ?p ?o ?g. }
- W4290729105 abstract "Abstract Objective The rate of diabetic complication progression varies across individuals and understanding factors that alter the rate of complication progression may uncover new clinical interventions for personalized diabetes management. Materials and Methods We explore how various machine learning (ML) models and types of electronic health records (EHRs) can predict fast versus slow onset of neuropathy, nephropathy, ocular disease, or cardiovascular disease using only patient data collected prior to diabetes diagnosis. Results We find that optimized random forest models performed best to accurately predict the diagnosis of a diabetic complication, with the most effective model distinguishing between fast versus slow nephropathy (AUROC = 0.75). Using all data sets combined allowed for the highest model predictive performance, and social history or laboratory alone were most predictive. SHapley Additive exPlanations (SHAP) model interpretation allowed for exploration of predictors of fast and slow complication diagnosis, including underlying biases present in the EHR. Patients in the fast group had more medical visits, incurring a potential informed decision bias. Discussion Our study is unique in the realm of ML studies as it leverages SHAP as a starting point to explore patient markers not routinely used in diabetes monitoring. A mix of both bias and biological processes is likely present in influencing a model’s ability to distinguish between groups. Conclusion Overall, model interpretation is a critical step in evaluating validity of a user-intended endpoint for a model when using EHR data, and predictors affected by bias and those driven by biologic processes should be equally recognized." @default.
- W4290729105 created "2022-08-09" @default.
- W4290729105 creator A5042629080 @default.
- W4290729105 creator A5067432674 @default.
- W4290729105 creator A5086693051 @default.
- W4290729105 date "2022-07-11" @default.
- W4290729105 modified "2023-10-14" @default.
- W4290729105 title "Bias or biology? Importance of model interpretation in machine learning studies from electronic health records" @default.
- W4290729105 cites W103485765 @default.
- W4290729105 cites W1657197635 @default.
- W4290729105 cites W1943063538 @default.
- W4290729105 cites W1966862289 @default.
- W4290729105 cites W2028025215 @default.
- W4290729105 cites W2049022568 @default.
- W4290729105 cites W2064186732 @default.
- W4290729105 cites W2100789884 @default.
- W4290729105 cites W2111188992 @default.
- W4290729105 cites W2122585037 @default.
- W4290729105 cites W2123946565 @default.
- W4290729105 cites W2131427439 @default.
- W4290729105 cites W2157011819 @default.
- W4290729105 cites W2165560933 @default.
- W4290729105 cites W2169714812 @default.
- W4290729105 cites W2188846692 @default.
- W4290729105 cites W2271771390 @default.
- W4290729105 cites W2302447233 @default.
- W4290729105 cites W2337137281 @default.
- W4290729105 cites W2337454357 @default.
- W4290729105 cites W2503745853 @default.
- W4290729105 cites W2518433199 @default.
- W4290729105 cites W2518542469 @default.
- W4290729105 cites W2555058594 @default.
- W4290729105 cites W2590470309 @default.
- W4290729105 cites W2760585829 @default.
- W4290729105 cites W2769264260 @default.
- W4290729105 cites W2788816402 @default.
- W4290729105 cites W2808141153 @default.
- W4290729105 cites W2892741787 @default.
- W4290729105 cites W2899298288 @default.
- W4290729105 cites W2899476387 @default.
- W4290729105 cites W2900628320 @default.
- W4290729105 cites W2904349430 @default.
- W4290729105 cites W2907212967 @default.
- W4290729105 cites W2946814533 @default.
- W4290729105 cites W2966218717 @default.
- W4290729105 cites W2968847082 @default.
- W4290729105 cites W2972785004 @default.
- W4290729105 cites W2989324284 @default.
- W4290729105 cites W2999615587 @default.
- W4290729105 cites W3006607088 @default.
- W4290729105 cites W3080667022 @default.
- W4290729105 cites W3082762715 @default.
- W4290729105 cites W3094171951 @default.
- W4290729105 cites W3103145119 @default.
- W4290729105 cites W3127218785 @default.
- W4290729105 cites W3133400829 @default.
- W4290729105 cites W3163447191 @default.
- W4290729105 cites W3194710570 @default.
- W4290729105 cites W3205064505 @default.
- W4290729105 cites W3209214964 @default.
- W4290729105 cites W4242364069 @default.
- W4290729105 cites W4252649597 @default.
- W4290729105 cites W4255078542 @default.
- W4290729105 cites W42829104 @default.
- W4290729105 doi "https://doi.org/10.1093/jamiaopen/ooac063" @default.
- W4290729105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35958671" @default.
- W4290729105 hasPublicationYear "2022" @default.
- W4290729105 type Work @default.
- W4290729105 citedByCount "2" @default.
- W4290729105 countsByYear W42907291052023 @default.
- W4290729105 crossrefType "journal-article" @default.
- W4290729105 hasAuthorship W4290729105A5042629080 @default.
- W4290729105 hasAuthorship W4290729105A5067432674 @default.
- W4290729105 hasAuthorship W4290729105A5086693051 @default.
- W4290729105 hasBestOaLocation W42907291051 @default.
- W4290729105 hasConcept C119857082 @default.
- W4290729105 hasConcept C126322002 @default.
- W4290729105 hasConcept C134018914 @default.
- W4290729105 hasConcept C142724271 @default.
- W4290729105 hasConcept C154945302 @default.
- W4290729105 hasConcept C160735492 @default.
- W4290729105 hasConcept C162324750 @default.
- W4290729105 hasConcept C177713679 @default.
- W4290729105 hasConcept C195910791 @default.
- W4290729105 hasConcept C2779134260 @default.
- W4290729105 hasConcept C2781184683 @default.
- W4290729105 hasConcept C3019952477 @default.
- W4290729105 hasConcept C41008148 @default.
- W4290729105 hasConcept C50522688 @default.
- W4290729105 hasConcept C534262118 @default.
- W4290729105 hasConcept C555293320 @default.
- W4290729105 hasConcept C71924100 @default.
- W4290729105 hasConcept C81182388 @default.
- W4290729105 hasConceptScore W4290729105C119857082 @default.
- W4290729105 hasConceptScore W4290729105C126322002 @default.
- W4290729105 hasConceptScore W4290729105C134018914 @default.
- W4290729105 hasConceptScore W4290729105C142724271 @default.
- W4290729105 hasConceptScore W4290729105C154945302 @default.
- W4290729105 hasConceptScore W4290729105C160735492 @default.
- W4290729105 hasConceptScore W4290729105C162324750 @default.