Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290790764> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4290790764 endingPage "132489" @default.
- W4290790764 startingPage "132489" @default.
- W4290790764 abstract "Here, a microfluidic paper-based analytical device ( μ PAD) was first combined with a deep learning-based smartphone app called “ DeepLactate ” and then applied for quantitative and selective determination of lactate concentration in sweat. The μ PAD was made using wax printing protocol and the detection area was modified with horse radish peroxidase, lactate oxidase and the chromogenic agent 3,3′,5,5′-tetramethylbenzidine for enzymatic detection. The images of μ PADs taken by smartphones of several brands in different lighting conditions were used to train various deep learning models to make the system more robust and adaptable to lighting changes. The top-performing model, Inception-v3, was then embedded into a smartphone app, offering easy-operation for non-expert users. Deep learning models, unlike machine learning classifiers, can automatically extract features and be embedded in a smartphone app, enabling analysis without internet access. According to the results, the current system showed a classification accuracy of 99.9 % with phone-independent repeatability and a processing time of less than 1 sec. It also showed excellent selectivity towards lactate over different interfering species. Finally, μ PAD was turned into a patch to determine the level of sweat lactate in two volunteers after resting and 15 min of jogging. The system successfully detected lactate in human sweat and confirmed that the level of lactate in sweat increased after jogging. Since the μ PAD was designed to first absorb a sample and then transfer it to the detection area, avoiding direct contact with the skin, the system reduces the possibility of skin irritation and has great potential for practical use in a variety of fields including self-health monitoring and sports medicine. • A highly accurate and rapid classification of sweat lactate by a deep learning model embedded smartphone app. • The integrated system offers the advantages of offline, accurate, and rapid analysis in resource-limited settings. • The sensor displayed a detection limit of 0.67 mM and high selectivity for lactate. • A classification accuracy of 99.9 % with phone-independent repeatability and a processing time of less than 1 sec. • The system successfully detected lactate in human sweat and confirmed that the lactate level increased after jogging." @default.
- W4290790764 created "2022-08-09" @default.
- W4290790764 creator A5040113816 @default.
- W4290790764 creator A5046092163 @default.
- W4290790764 creator A5063512115 @default.
- W4290790764 creator A5085380305 @default.
- W4290790764 date "2022-11-01" @default.
- W4290790764 modified "2023-10-12" @default.
- W4290790764 title "Smartphone embedded deep learning approach for highly accurate and automated colorimetric lactate analysis in sweat" @default.
- W4290790764 cites W1963528082 @default.
- W4290790764 cites W2079026833 @default.
- W4290790764 cites W2084687061 @default.
- W4290790764 cites W2116005833 @default.
- W4290790764 cites W2183341477 @default.
- W4290790764 cites W2304855342 @default.
- W4290790764 cites W2331128040 @default.
- W4290790764 cites W2497778853 @default.
- W4290790764 cites W2531409750 @default.
- W4290790764 cites W2564910864 @default.
- W4290790764 cites W2597747340 @default.
- W4290790764 cites W2726996401 @default.
- W4290790764 cites W2747898905 @default.
- W4290790764 cites W2753024880 @default.
- W4290790764 cites W2765968595 @default.
- W4290790764 cites W2805748367 @default.
- W4290790764 cites W2848846851 @default.
- W4290790764 cites W2891702190 @default.
- W4290790764 cites W2894090929 @default.
- W4290790764 cites W2901019607 @default.
- W4290790764 cites W2963980515 @default.
- W4290790764 cites W2997980605 @default.
- W4290790764 cites W3013876329 @default.
- W4290790764 cites W3027362665 @default.
- W4290790764 cites W3089544306 @default.
- W4290790764 cites W3093366363 @default.
- W4290790764 cites W3094073235 @default.
- W4290790764 cites W3115403283 @default.
- W4290790764 cites W3134438528 @default.
- W4290790764 cites W3137844657 @default.
- W4290790764 cites W3214466261 @default.
- W4290790764 cites W4200245311 @default.
- W4290790764 cites W4205504823 @default.
- W4290790764 cites W4206620949 @default.
- W4290790764 cites W4206678745 @default.
- W4290790764 cites W4214895504 @default.
- W4290790764 cites W4224232322 @default.
- W4290790764 doi "https://doi.org/10.1016/j.snb.2022.132489" @default.
- W4290790764 hasPublicationYear "2022" @default.
- W4290790764 type Work @default.
- W4290790764 citedByCount "23" @default.
- W4290790764 countsByYear W42907907642022 @default.
- W4290790764 countsByYear W42907907642023 @default.
- W4290790764 crossrefType "journal-article" @default.
- W4290790764 hasAuthorship W4290790764A5040113816 @default.
- W4290790764 hasAuthorship W4290790764A5046092163 @default.
- W4290790764 hasAuthorship W4290790764A5063512115 @default.
- W4290790764 hasAuthorship W4290790764A5085380305 @default.
- W4290790764 hasConcept C108583219 @default.
- W4290790764 hasConcept C119857082 @default.
- W4290790764 hasConcept C126322002 @default.
- W4290790764 hasConcept C154945302 @default.
- W4290790764 hasConcept C41008148 @default.
- W4290790764 hasConcept C63398376 @default.
- W4290790764 hasConcept C71924100 @default.
- W4290790764 hasConceptScore W4290790764C108583219 @default.
- W4290790764 hasConceptScore W4290790764C119857082 @default.
- W4290790764 hasConceptScore W4290790764C126322002 @default.
- W4290790764 hasConceptScore W4290790764C154945302 @default.
- W4290790764 hasConceptScore W4290790764C41008148 @default.
- W4290790764 hasConceptScore W4290790764C63398376 @default.
- W4290790764 hasConceptScore W4290790764C71924100 @default.
- W4290790764 hasLocation W42907907641 @default.
- W4290790764 hasOpenAccess W4290790764 @default.
- W4290790764 hasPrimaryLocation W42907907641 @default.
- W4290790764 hasRelatedWork W2922457425 @default.
- W4290790764 hasRelatedWork W3014300295 @default.
- W4290790764 hasRelatedWork W3124051732 @default.
- W4290790764 hasRelatedWork W3164822677 @default.
- W4290790764 hasRelatedWork W3215138031 @default.
- W4290790764 hasRelatedWork W4223943233 @default.
- W4290790764 hasRelatedWork W4225161397 @default.
- W4290790764 hasRelatedWork W4250304930 @default.
- W4290790764 hasRelatedWork W4299487748 @default.
- W4290790764 hasRelatedWork W4309045103 @default.
- W4290790764 hasVolume "371" @default.
- W4290790764 isParatext "false" @default.
- W4290790764 isRetracted "false" @default.
- W4290790764 workType "article" @default.