Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290802364> ?p ?o ?g. }
- W4290802364 abstract "Many phenomena in physics, including light, water waves, and sound, are described by wave equations. Given their coefficients, wave equations can be solved to high accuracy, but the presence of the wavelength scale often leads to large computer simulations for anything beyond the simplest geometries. The inverse problem, determining the coefficients from a field on a boundary, is even more demanding, since traditional optimization requires a large number of forward problems be solved sequentially. Here we show that the free-form inverse problem of wave equations can be solved with machine learning. First we show that deep neural networks can be used to predict the optical properties of nanostructured materials such as metasurfaces. Then we demonstrate the free-form inverse design of such nanostructures and show that constraints imposed by experimental feasibility can be taken into account. Our neural networks promise automated design in several technologies based on the wave equation." @default.
- W4290802364 created "2022-08-12" @default.
- W4290802364 creator A5042446955 @default.
- W4290802364 creator A5084551767 @default.
- W4290802364 date "2022-08-11" @default.
- W4290802364 modified "2023-10-09" @default.
- W4290802364 title "Deep neural networks for the prediction of the optical properties and the free-form inverse design of metamaterials" @default.
- W4290802364 cites W1483290839 @default.
- W4290802364 cites W1929077562 @default.
- W4290802364 cites W1969578377 @default.
- W4290802364 cites W1991113069 @default.
- W4290802364 cites W1994520136 @default.
- W4290802364 cites W2009741032 @default.
- W4290802364 cites W2011942290 @default.
- W4290802364 cites W2052256686 @default.
- W4290802364 cites W2077735967 @default.
- W4290802364 cites W2120737744 @default.
- W4290802364 cites W2523514366 @default.
- W4290802364 cites W2531147647 @default.
- W4290802364 cites W2547700645 @default.
- W4290802364 cites W2571907177 @default.
- W4290802364 cites W2697735281 @default.
- W4290802364 cites W2749793803 @default.
- W4290802364 cites W2766162919 @default.
- W4290802364 cites W2775280502 @default.
- W4290802364 cites W2803281408 @default.
- W4290802364 cites W2884775584 @default.
- W4290802364 cites W2891797827 @default.
- W4290802364 cites W2904094636 @default.
- W4290802364 cites W2908541468 @default.
- W4290802364 cites W2914973752 @default.
- W4290802364 cites W2919115771 @default.
- W4290802364 cites W2925047271 @default.
- W4290802364 cites W2949960465 @default.
- W4290802364 cites W2962797490 @default.
- W4290802364 cites W2964155064 @default.
- W4290802364 cites W2969080305 @default.
- W4290802364 cites W2989226760 @default.
- W4290802364 cites W2989293933 @default.
- W4290802364 cites W2994313880 @default.
- W4290802364 cites W2994841848 @default.
- W4290802364 cites W3005792502 @default.
- W4290802364 cites W3011465841 @default.
- W4290802364 cites W3022842145 @default.
- W4290802364 cites W3023907686 @default.
- W4290802364 cites W3035650744 @default.
- W4290802364 cites W3045503779 @default.
- W4290802364 cites W3049316615 @default.
- W4290802364 cites W3057900405 @default.
- W4290802364 cites W3081873517 @default.
- W4290802364 cites W3095606665 @default.
- W4290802364 cites W3096831136 @default.
- W4290802364 cites W3100996627 @default.
- W4290802364 cites W3105195789 @default.
- W4290802364 cites W3128539297 @default.
- W4290802364 cites W3128887649 @default.
- W4290802364 cites W3158382409 @default.
- W4290802364 cites W3194987791 @default.
- W4290802364 doi "https://doi.org/10.1103/physrevb.106.085408" @default.
- W4290802364 hasPublicationYear "2022" @default.
- W4290802364 type Work @default.
- W4290802364 citedByCount "3" @default.
- W4290802364 countsByYear W42908023642022 @default.
- W4290802364 countsByYear W42908023642023 @default.
- W4290802364 crossrefType "journal-article" @default.
- W4290802364 hasAuthorship W4290802364A5042446955 @default.
- W4290802364 hasAuthorship W4290802364A5084551767 @default.
- W4290802364 hasBestOaLocation W42908023642 @default.
- W4290802364 hasConcept C110367647 @default.
- W4290802364 hasConcept C120665830 @default.
- W4290802364 hasConcept C121332964 @default.
- W4290802364 hasConcept C121864883 @default.
- W4290802364 hasConcept C134306372 @default.
- W4290802364 hasConcept C135252773 @default.
- W4290802364 hasConcept C154945302 @default.
- W4290802364 hasConcept C182310444 @default.
- W4290802364 hasConcept C202444582 @default.
- W4290802364 hasConcept C207467116 @default.
- W4290802364 hasConcept C2524010 @default.
- W4290802364 hasConcept C33923547 @default.
- W4290802364 hasConcept C41008148 @default.
- W4290802364 hasConcept C50644808 @default.
- W4290802364 hasConcept C59696629 @default.
- W4290802364 hasConcept C62520636 @default.
- W4290802364 hasConcept C6260449 @default.
- W4290802364 hasConcept C9652623 @default.
- W4290802364 hasConceptScore W4290802364C110367647 @default.
- W4290802364 hasConceptScore W4290802364C120665830 @default.
- W4290802364 hasConceptScore W4290802364C121332964 @default.
- W4290802364 hasConceptScore W4290802364C121864883 @default.
- W4290802364 hasConceptScore W4290802364C134306372 @default.
- W4290802364 hasConceptScore W4290802364C135252773 @default.
- W4290802364 hasConceptScore W4290802364C154945302 @default.
- W4290802364 hasConceptScore W4290802364C182310444 @default.
- W4290802364 hasConceptScore W4290802364C202444582 @default.
- W4290802364 hasConceptScore W4290802364C207467116 @default.
- W4290802364 hasConceptScore W4290802364C2524010 @default.
- W4290802364 hasConceptScore W4290802364C33923547 @default.
- W4290802364 hasConceptScore W4290802364C41008148 @default.
- W4290802364 hasConceptScore W4290802364C50644808 @default.