Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290802941> ?p ?o ?g. }
- W4290802941 abstract "Nuclear masses are predicted with the Bayesian neural networks by learning the mass surface of even-even nuclei and the correlation energies to their neighboring nuclei. By keeping the known physics in various sophisticated mass models and performing the delicate design of neural networks, the proposed Bayesian machine learning mass model achieves an accuracy of $84phantom{rule{0.16em}{0ex}}mathrm{keV}$, which crosses the accuracy threshold of the $100phantom{rule{0.16em}{0ex}}mathrm{keV}$ in the experimentally known region. It is also demonstrated the corresponding uncertainties of mass predictions are properly evaluated, while the uncertainties increase by about $50phantom{rule{0.16em}{0ex}}mathrm{keV}$ each step along the isotopic chains towards the unknown region. The shell structures in the known region are well described and several important features in the unknown region are predicted, such as the new magic numbers around $N=40$, the robustness of $N=82$ shell, the quenching of $N=126$ shell, and the smooth separation energies around $N=104$." @default.
- W4290802941 created "2022-08-12" @default.
- W4290802941 creator A5066987233 @default.
- W4290802941 creator A5070668888 @default.
- W4290802941 date "2022-08-08" @default.
- W4290802941 modified "2023-10-16" @default.
- W4290802941 title "Nuclear mass predictions with machine learning reaching the accuracy required by <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>r</mml:mi></mml:math> -process studies" @default.
- W4290802941 cites W1567512734 @default.
- W4290802941 cites W1946796168 @default.
- W4290802941 cites W1973562435 @default.
- W4290802941 cites W1981179680 @default.
- W4290802941 cites W1991590350 @default.
- W4290802941 cites W1994633632 @default.
- W4290802941 cites W2006086669 @default.
- W4290802941 cites W2014887833 @default.
- W4290802941 cites W2027664404 @default.
- W4290802941 cites W2028736041 @default.
- W4290802941 cites W2033672737 @default.
- W4290802941 cites W2059622337 @default.
- W4290802941 cites W2066592743 @default.
- W4290802941 cites W2080290513 @default.
- W4290802941 cites W2089630383 @default.
- W4290802941 cites W2111306697 @default.
- W4290802941 cites W2111746204 @default.
- W4290802941 cites W2196489442 @default.
- W4290802941 cites W2323397983 @default.
- W4290802941 cites W2331610672 @default.
- W4290802941 cites W2468145764 @default.
- W4290802941 cites W2578792264 @default.
- W4290802941 cites W2613157896 @default.
- W4290802941 cites W2737629271 @default.
- W4290802941 cites W2738728549 @default.
- W4290802941 cites W2765180549 @default.
- W4290802941 cites W2765462474 @default.
- W4290802941 cites W2776055632 @default.
- W4290802941 cites W2783931264 @default.
- W4290802941 cites W2789209401 @default.
- W4290802941 cites W2792105651 @default.
- W4290802941 cites W2795541801 @default.
- W4290802941 cites W2800445357 @default.
- W4290802941 cites W2803945894 @default.
- W4290802941 cites W2806629281 @default.
- W4290802941 cites W2807527208 @default.
- W4290802941 cites W2811271699 @default.
- W4290802941 cites W2849772005 @default.
- W4290802941 cites W2884339996 @default.
- W4290802941 cites W2886111558 @default.
- W4290802941 cites W2904492472 @default.
- W4290802941 cites W2911716923 @default.
- W4290802941 cites W2915181819 @default.
- W4290802941 cites W2919241396 @default.
- W4290802941 cites W2947017207 @default.
- W4290802941 cites W2951597345 @default.
- W4290802941 cites W2958441987 @default.
- W4290802941 cites W2962184525 @default.
- W4290802941 cites W2968277853 @default.
- W4290802941 cites W2969271130 @default.
- W4290802941 cites W2981754620 @default.
- W4290802941 cites W2983207921 @default.
- W4290802941 cites W2990387162 @default.
- W4290802941 cites W2998313242 @default.
- W4290802941 cites W3003673118 @default.
- W4290802941 cites W3010691349 @default.
- W4290802941 cites W3012128074 @default.
- W4290802941 cites W3019101549 @default.
- W4290802941 cites W3019832623 @default.
- W4290802941 cites W3019978686 @default.
- W4290802941 cites W3026941176 @default.
- W4290802941 cites W3038357890 @default.
- W4290802941 cites W3049022315 @default.
- W4290802941 cites W3100052272 @default.
- W4290802941 cites W3100915065 @default.
- W4290802941 cites W3101713429 @default.
- W4290802941 cites W3102997012 @default.
- W4290802941 cites W3103004404 @default.
- W4290802941 cites W3137387095 @default.
- W4290802941 cites W4206983114 @default.
- W4290802941 doi "https://doi.org/10.1103/physrevc.106.l021303" @default.
- W4290802941 hasPublicationYear "2022" @default.
- W4290802941 type Work @default.
- W4290802941 citedByCount "11" @default.
- W4290802941 countsByYear W42908029412022 @default.
- W4290802941 countsByYear W42908029412023 @default.
- W4290802941 crossrefType "journal-article" @default.
- W4290802941 hasAuthorship W4290802941A5066987233 @default.
- W4290802941 hasAuthorship W4290802941A5070668888 @default.
- W4290802941 hasBestOaLocation W42908029412 @default.
- W4290802941 hasConcept C104293457 @default.
- W4290802941 hasConcept C104317684 @default.
- W4290802941 hasConcept C11413529 @default.
- W4290802941 hasConcept C119857082 @default.
- W4290802941 hasConcept C120665830 @default.
- W4290802941 hasConcept C121332964 @default.
- W4290802941 hasConcept C154945302 @default.
- W4290802941 hasConcept C185592680 @default.
- W4290802941 hasConcept C41008148 @default.
- W4290802941 hasConcept C50644808 @default.
- W4290802941 hasConcept C55493867 @default.
- W4290802941 hasConcept C63479239 @default.
- W4290802941 hasConceptScore W4290802941C104293457 @default.