Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290804306> ?p ?o ?g. }
- W4290804306 endingPage "2536" @default.
- W4290804306 startingPage "2513" @default.
- W4290804306 abstract "Abstract Partial differential equations (PDEs) are the most ubiquitous tools for modeling natural science problems and have long received attention. Physics‐informed neural networks (PINNs) are emerging approaches to approximately solve PDEs. PINNs use automatic differentiation technology to construct the residual of PDEs in the loss function to encode physics conservation laws. We call this process the Single‐Net strategy. Due to the dependency of automatic differentiation among different orders of derivatives, the efficiency of PINNs under the Single‐Net strategy is limited. To address this issue, we propose the Multi‐Net strategy to decouple the dependency. Compared with the Single‐Net strategy, the Multi‐Net strategy reduces the training time of PINNs, and meanwhile, keeps the prediction accuracy. The effectiveness of the proposed strategy is demonstrated through time complexity analysis and a collection of experiments on Burgers equation, advection‐dispersion equation, Kdv equation, and Allen–Cahn equation." @default.
- W4290804306 created "2022-08-12" @default.
- W4290804306 creator A5036954210 @default.
- W4290804306 creator A5059770282 @default.
- W4290804306 creator A5068568697 @default.
- W4290804306 creator A5087429609 @default.
- W4290804306 creator A5090949378 @default.
- W4290804306 date "2022-08-11" @default.
- W4290804306 modified "2023-09-26" @default.
- W4290804306 title "Multi‐Net strategy: Accelerating physics‐informed neural networks for solving partial differential equations" @default.
- W4290804306 cites W1997248163 @default.
- W4290804306 cites W2025444507 @default.
- W4290804306 cites W2026656818 @default.
- W4290804306 cites W2048680633 @default.
- W4290804306 cites W2121198253 @default.
- W4290804306 cites W2141861961 @default.
- W4290804306 cites W2520751857 @default.
- W4290804306 cites W2527189750 @default.
- W4290804306 cites W2565432921 @default.
- W4290804306 cites W2803629276 @default.
- W4290804306 cites W2891039272 @default.
- W4290804306 cites W2899283552 @default.
- W4290804306 cites W2900369848 @default.
- W4290804306 cites W2913323966 @default.
- W4290804306 cites W2969381807 @default.
- W4290804306 cites W2982585804 @default.
- W4290804306 cites W2995511918 @default.
- W4290804306 cites W3003922491 @default.
- W4290804306 cites W3010849941 @default.
- W4290804306 cites W3028529071 @default.
- W4290804306 cites W3039304986 @default.
- W4290804306 cites W3041682155 @default.
- W4290804306 cites W3047001618 @default.
- W4290804306 cites W3080930191 @default.
- W4290804306 cites W3101260193 @default.
- W4290804306 cites W3118861991 @default.
- W4290804306 cites W3175296232 @default.
- W4290804306 doi "https://doi.org/10.1002/spe.3136" @default.
- W4290804306 hasPublicationYear "2022" @default.
- W4290804306 type Work @default.
- W4290804306 citedByCount "0" @default.
- W4290804306 crossrefType "journal-article" @default.
- W4290804306 hasAuthorship W4290804306A5036954210 @default.
- W4290804306 hasAuthorship W4290804306A5059770282 @default.
- W4290804306 hasAuthorship W4290804306A5068568697 @default.
- W4290804306 hasAuthorship W4290804306A5087429609 @default.
- W4290804306 hasAuthorship W4290804306A5090949378 @default.
- W4290804306 hasConcept C11413529 @default.
- W4290804306 hasConcept C121332964 @default.
- W4290804306 hasConcept C126255220 @default.
- W4290804306 hasConcept C129747778 @default.
- W4290804306 hasConcept C133512626 @default.
- W4290804306 hasConcept C134306372 @default.
- W4290804306 hasConcept C14036430 @default.
- W4290804306 hasConcept C14166107 @default.
- W4290804306 hasConcept C146630112 @default.
- W4290804306 hasConcept C154945302 @default.
- W4290804306 hasConcept C155512373 @default.
- W4290804306 hasConcept C158622935 @default.
- W4290804306 hasConcept C19768560 @default.
- W4290804306 hasConcept C2524010 @default.
- W4290804306 hasConcept C28826006 @default.
- W4290804306 hasConcept C33923547 @default.
- W4290804306 hasConcept C3445786 @default.
- W4290804306 hasConcept C41008148 @default.
- W4290804306 hasConcept C45374587 @default.
- W4290804306 hasConcept C50644808 @default.
- W4290804306 hasConcept C62520636 @default.
- W4290804306 hasConcept C64057670 @default.
- W4290804306 hasConcept C78458016 @default.
- W4290804306 hasConcept C86803240 @default.
- W4290804306 hasConcept C93779851 @default.
- W4290804306 hasConceptScore W4290804306C11413529 @default.
- W4290804306 hasConceptScore W4290804306C121332964 @default.
- W4290804306 hasConceptScore W4290804306C126255220 @default.
- W4290804306 hasConceptScore W4290804306C129747778 @default.
- W4290804306 hasConceptScore W4290804306C133512626 @default.
- W4290804306 hasConceptScore W4290804306C134306372 @default.
- W4290804306 hasConceptScore W4290804306C14036430 @default.
- W4290804306 hasConceptScore W4290804306C14166107 @default.
- W4290804306 hasConceptScore W4290804306C146630112 @default.
- W4290804306 hasConceptScore W4290804306C154945302 @default.
- W4290804306 hasConceptScore W4290804306C155512373 @default.
- W4290804306 hasConceptScore W4290804306C158622935 @default.
- W4290804306 hasConceptScore W4290804306C19768560 @default.
- W4290804306 hasConceptScore W4290804306C2524010 @default.
- W4290804306 hasConceptScore W4290804306C28826006 @default.
- W4290804306 hasConceptScore W4290804306C33923547 @default.
- W4290804306 hasConceptScore W4290804306C3445786 @default.
- W4290804306 hasConceptScore W4290804306C41008148 @default.
- W4290804306 hasConceptScore W4290804306C45374587 @default.
- W4290804306 hasConceptScore W4290804306C50644808 @default.
- W4290804306 hasConceptScore W4290804306C62520636 @default.
- W4290804306 hasConceptScore W4290804306C64057670 @default.
- W4290804306 hasConceptScore W4290804306C78458016 @default.
- W4290804306 hasConceptScore W4290804306C86803240 @default.
- W4290804306 hasConceptScore W4290804306C93779851 @default.
- W4290804306 hasFunder F4320322847 @default.