Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290804850> ?p ?o ?g. }
- W4290804850 endingPage "116084" @default.
- W4290804850 startingPage "116084" @default.
- W4290804850 abstract "Slash-and-burn is a common practice in the subtropical karst areas of southwest China, as well as in other places around the world, to prepare forest land for agricultural plantations. Understanding the effect of slash-and-burn practice on soil nitrogen (N) supply capacity is critical for the preservation of ecosystem services including long-term plant productivity. This is of particular relevance in mountainous karst regions with thin calcareous soils characterized by high pH, high calcium (Ca), and high soil loss risk. In this study, a 15N tracing approach was employed to quantify the effect of slash-and-burn on gross N-transformation rates and the mineralization-immobilization turnover (MIT) in soils from subtropical karst regions half-year after the burning, right before the agricultural cultivation began. Soil samples were collected from burned and nearby control sites (woodland). Compared to the control sites, the contents of soil organic carbon, total N, and Ca were lower in the burned sites, while no significant difference was observed in soil enzyme activities. The rates of mineralization of organic N to ammonium (NH4+), NH4+ adsorption and release, NH4+ oxidation to nitrate (NO3–) (i.e., autotrophic nitrification, ONH4), and microbial NO3– immobilization were significantly lower in burned sites, suggesting that slash-and-burn has a negative effect on MIT in karst regions. The mean residence times of inorganic N were 4.33 ± 0.53 d-1 for NH4+ and 6.83 ± 1.76 d-1 for NO3– in burned soil, which is remarkably higher than the control soil (0.77 ± 0.08 d-1 for NH4+ and 2.47 ± 0.83 d-1 for NO3–), indicating decreased N turnover after slash-and-burn. Abundances of bacteria and fungi, reflected by 16 s rRNA and ITS gene analyses, were not different between burned and control sites, suggesting that microbial community composition and activity, rather than the population size, controls the microbial-modulated N transformations. Owning to the slower NH4+ and NO3– turnover and reduced soil N transformation rates, we conclude slash-and-burn practice significantly lowers soil inorganic N supply capacity, leading to remarkably reduced soil inorganic N content, especially for NO3– (from 59.9 ± 8.67 mg N kg−1 to 44.1 ± 1.86 mg N kg−1), which may further restrict the efficiency of agricultural exploitation. Thus, we recommend that the follow-up agricultural activities after slash-and-burn practice need to take this into account in addition to erosion control and nutrient conservation measures." @default.
- W4290804850 created "2022-08-12" @default.
- W4290804850 creator A5013664177 @default.
- W4290804850 creator A5030342265 @default.
- W4290804850 creator A5041263977 @default.
- W4290804850 creator A5066014453 @default.
- W4290804850 creator A5078969017 @default.
- W4290804850 creator A5079972031 @default.
- W4290804850 date "2022-11-01" @default.
- W4290804850 modified "2023-10-16" @default.
- W4290804850 title "Slash-and-burn in karst regions lowers soil gross nitrogen (N) transformation rates and N-turnover" @default.
- W4290804850 cites W1782049738 @default.
- W4290804850 cites W1867433166 @default.
- W4290804850 cites W1878020421 @default.
- W4290804850 cites W1949462709 @default.
- W4290804850 cites W1965417601 @default.
- W4290804850 cites W1971981820 @default.
- W4290804850 cites W1978603843 @default.
- W4290804850 cites W1979954860 @default.
- W4290804850 cites W1981261000 @default.
- W4290804850 cites W1981977817 @default.
- W4290804850 cites W1983623247 @default.
- W4290804850 cites W1996656076 @default.
- W4290804850 cites W2000253966 @default.
- W4290804850 cites W2000758550 @default.
- W4290804850 cites W2012862462 @default.
- W4290804850 cites W2016386926 @default.
- W4290804850 cites W2024615693 @default.
- W4290804850 cites W2025497868 @default.
- W4290804850 cites W2026329543 @default.
- W4290804850 cites W2031127960 @default.
- W4290804850 cites W2035811049 @default.
- W4290804850 cites W2038699372 @default.
- W4290804850 cites W2046436145 @default.
- W4290804850 cites W2061017345 @default.
- W4290804850 cites W2061686360 @default.
- W4290804850 cites W2069192918 @default.
- W4290804850 cites W2075523039 @default.
- W4290804850 cites W2077467628 @default.
- W4290804850 cites W2077918407 @default.
- W4290804850 cites W2086965309 @default.
- W4290804850 cites W2087137118 @default.
- W4290804850 cites W2091410512 @default.
- W4290804850 cites W2093521385 @default.
- W4290804850 cites W2100393318 @default.
- W4290804850 cites W2101144110 @default.
- W4290804850 cites W2101424567 @default.
- W4290804850 cites W2116279505 @default.
- W4290804850 cites W2119395826 @default.
- W4290804850 cites W2127000568 @default.
- W4290804850 cites W2132417395 @default.
- W4290804850 cites W2136181321 @default.
- W4290804850 cites W2136604100 @default.
- W4290804850 cites W2137764911 @default.
- W4290804850 cites W2151275301 @default.
- W4290804850 cites W2159237163 @default.
- W4290804850 cites W2161716434 @default.
- W4290804850 cites W2167319364 @default.
- W4290804850 cites W2170400694 @default.
- W4290804850 cites W2182735227 @default.
- W4290804850 cites W2190546151 @default.
- W4290804850 cites W2299123263 @default.
- W4290804850 cites W2511532521 @default.
- W4290804850 cites W2765090906 @default.
- W4290804850 cites W2767934482 @default.
- W4290804850 cites W2791908460 @default.
- W4290804850 cites W2892278769 @default.
- W4290804850 cites W2898239667 @default.
- W4290804850 cites W2902227974 @default.
- W4290804850 cites W2932650795 @default.
- W4290804850 cites W2969864881 @default.
- W4290804850 cites W2971976186 @default.
- W4290804850 cites W2981464168 @default.
- W4290804850 cites W3014979956 @default.
- W4290804850 cites W3018262654 @default.
- W4290804850 cites W3029923327 @default.
- W4290804850 cites W3080433495 @default.
- W4290804850 cites W3092381030 @default.
- W4290804850 cites W3093346785 @default.
- W4290804850 cites W3097668755 @default.
- W4290804850 cites W3118894002 @default.
- W4290804850 cites W3173847659 @default.
- W4290804850 cites W3191467368 @default.
- W4290804850 cites W631151095 @default.
- W4290804850 cites W2927910780 @default.
- W4290804850 doi "https://doi.org/10.1016/j.geoderma.2022.116084" @default.
- W4290804850 hasPublicationYear "2022" @default.
- W4290804850 type Work @default.
- W4290804850 citedByCount "3" @default.
- W4290804850 countsByYear W42908048502022 @default.
- W4290804850 countsByYear W42908048502023 @default.
- W4290804850 crossrefType "journal-article" @default.
- W4290804850 hasAuthorship W4290804850A5013664177 @default.
- W4290804850 hasAuthorship W4290804850A5030342265 @default.
- W4290804850 hasAuthorship W4290804850A5041263977 @default.
- W4290804850 hasAuthorship W4290804850A5066014453 @default.
- W4290804850 hasAuthorship W4290804850A5078969017 @default.
- W4290804850 hasAuthorship W4290804850A5079972031 @default.