Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290851120> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4290851120 endingPage "21" @default.
- W4290851120 startingPage "1" @default.
- W4290851120 abstract "Abstract The problem of varying length recordings is a well-known issue in paralinguistics. We investigated how to resolve this problem using the bag-of-audio-words feature extraction approach. The steps of this technique involve preprocessing, clustering, quantization and normalization. The bag-of-audio-words technique is competitive in the area of speech emotion recognition, but the method has several parameters that need to be precisely tuned for good efficiency. The main aim of our study was to analyse the effectiveness of bag-of-audio-words method and try to find the best parameter values for emotion recognition. We optimized the parameters one-by-one, but built on the results of each other. We performed the feature extraction, using openSMILE. Next we transformed our features into same-sized vectors with openXBOW, and finally trained and evaluated SVM models with 10-fold-crossvalidation and UAR. In our experiments, we worked with a Hungarian emotion database. According to our results, the emotion classification performance improves with the bag-of-audio-words feature representation. Not all the BoAW parameters have the optimal settings but later we can make clear recommendations on how to set bag-of-audio-words parameters for emotion detection tasks." @default.
- W4290851120 created "2022-08-12" @default.
- W4290851120 creator A5019506454 @default.
- W4290851120 creator A5088559776 @default.
- W4290851120 date "2022-08-01" @default.
- W4290851120 modified "2023-10-14" @default.
- W4290851120 title "Using the Bag-of-Audio-Words approach for emotion recognition" @default.
- W4290851120 cites W118756463 @default.
- W4290851120 cites W1492786132 @default.
- W4290851120 cites W1559922967 @default.
- W4290851120 cites W1576808190 @default.
- W4290851120 cites W1586300189 @default.
- W4290851120 cites W1901041506 @default.
- W4290851120 cites W1964442016 @default.
- W4290851120 cites W1980867644 @default.
- W4290851120 cites W202727379 @default.
- W4290851120 cites W2060079959 @default.
- W4290851120 cites W2077162233 @default.
- W4290851120 cites W2085662862 @default.
- W4290851120 cites W2132870739 @default.
- W4290851120 cites W2144005487 @default.
- W4290851120 cites W2153359947 @default.
- W4290851120 cites W2153635508 @default.
- W4290851120 cites W2401426213 @default.
- W4290851120 cites W2408491073 @default.
- W4290851120 cites W2498787287 @default.
- W4290851120 cites W2518110751 @default.
- W4290851120 cites W2611054117 @default.
- W4290851120 cites W2784665486 @default.
- W4290851120 cites W2889112744 @default.
- W4290851120 cites W3008039831 @default.
- W4290851120 cites W3015707499 @default.
- W4290851120 cites W3042273693 @default.
- W4290851120 doi "https://doi.org/10.2478/ausi-2022-0001" @default.
- W4290851120 hasPublicationYear "2022" @default.
- W4290851120 type Work @default.
- W4290851120 citedByCount "0" @default.
- W4290851120 crossrefType "journal-article" @default.
- W4290851120 hasAuthorship W4290851120A5019506454 @default.
- W4290851120 hasAuthorship W4290851120A5088559776 @default.
- W4290851120 hasBestOaLocation W42908511201 @default.
- W4290851120 hasConcept C12267149 @default.
- W4290851120 hasConcept C13672336 @default.
- W4290851120 hasConcept C136886441 @default.
- W4290851120 hasConcept C144024400 @default.
- W4290851120 hasConcept C153180895 @default.
- W4290851120 hasConcept C154945302 @default.
- W4290851120 hasConcept C19165224 @default.
- W4290851120 hasConcept C199833920 @default.
- W4290851120 hasConcept C204321447 @default.
- W4290851120 hasConcept C28490314 @default.
- W4290851120 hasConcept C34736171 @default.
- W4290851120 hasConcept C41008148 @default.
- W4290851120 hasConcept C52622490 @default.
- W4290851120 hasConcept C73555534 @default.
- W4290851120 hasConceptScore W4290851120C12267149 @default.
- W4290851120 hasConceptScore W4290851120C13672336 @default.
- W4290851120 hasConceptScore W4290851120C136886441 @default.
- W4290851120 hasConceptScore W4290851120C144024400 @default.
- W4290851120 hasConceptScore W4290851120C153180895 @default.
- W4290851120 hasConceptScore W4290851120C154945302 @default.
- W4290851120 hasConceptScore W4290851120C19165224 @default.
- W4290851120 hasConceptScore W4290851120C199833920 @default.
- W4290851120 hasConceptScore W4290851120C204321447 @default.
- W4290851120 hasConceptScore W4290851120C28490314 @default.
- W4290851120 hasConceptScore W4290851120C34736171 @default.
- W4290851120 hasConceptScore W4290851120C41008148 @default.
- W4290851120 hasConceptScore W4290851120C52622490 @default.
- W4290851120 hasConceptScore W4290851120C73555534 @default.
- W4290851120 hasIssue "1" @default.
- W4290851120 hasLocation W42908511201 @default.
- W4290851120 hasLocation W42908511202 @default.
- W4290851120 hasLocation W42908511203 @default.
- W4290851120 hasLocation W42908511204 @default.
- W4290851120 hasOpenAccess W4290851120 @default.
- W4290851120 hasPrimaryLocation W42908511201 @default.
- W4290851120 hasRelatedWork W2041399278 @default.
- W4290851120 hasRelatedWork W2098155230 @default.
- W4290851120 hasRelatedWork W2110904776 @default.
- W4290851120 hasRelatedWork W2126100045 @default.
- W4290851120 hasRelatedWork W2136184105 @default.
- W4290851120 hasRelatedWork W2336974148 @default.
- W4290851120 hasRelatedWork W2391959412 @default.
- W4290851120 hasRelatedWork W3013515612 @default.
- W4290851120 hasRelatedWork W2187500075 @default.
- W4290851120 hasRelatedWork W2345184372 @default.
- W4290851120 hasVolume "14" @default.
- W4290851120 isParatext "false" @default.
- W4290851120 isRetracted "false" @default.
- W4290851120 workType "article" @default.