Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290861158> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4290861158 endingPage "118515" @default.
- W4290861158 startingPage "118515" @default.
- W4290861158 abstract "The prevalence of chronic kidney diseases has raised the demand for kidney replacement therapy over recent years. Although kidney transplantation provides better life quality than other alternatives, the replacement might face rejection and endanger individuals’ lives. Therefore, predicting this rejection is of great importance, and due to the complexity of the human body's immune system, it is a complicated task. Machine learning has been widely used in disease diagnoses such as graft rejection. One of the common issues in disease diagnosis is the class imbalance problem. The predictive model is likely to misclassify all of the minority class samples in such cases. This paper proposes a method that can accurately predict kidney rejection in an imbalanced dataset. We have adopted kidney transplantation data from 378 patients collected from 1994 to 2011. Our main contribution is to develop a novel clustering method using Red Deer Algorithm (RDA), which is later utilized in proposing a three-stage clustering-based undersampling approach to handle the class imbalance problem so that the final predictive models can classify the given data more accurately. The undersampling method includes denoising, RDA clustering, and sample selection. Moreover, the proposed clustering method is also used to reduce the data dimensionality. Subsequently, five different classification algorithms such as Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbor (KNN), Decision Tree (DT), and an ensemble method are used to predict kidney graft rejection. Then, these classifiers are compared in terms of five performance evaluation metrics: accuracy, sensitivity, specificity, F1 score, and area under the Receiver Operating Characteristic (ROC) curve (AUC). The obtained results indicate that the decision tree model outperformed other algorithms and achieved 0.96, 0.94, 0.97, 0.95, and 0.95 for accuracy, sensitivity, specificity, F1 score, and AUC, respectively. Hence, it is highly recommended to use the proposed method as a decision support system for clinical experts to predict kidney transplantation failure." @default.
- W4290861158 created "2022-08-12" @default.
- W4290861158 creator A5056850967 @default.
- W4290861158 creator A5069004483 @default.
- W4290861158 date "2022-12-01" @default.
- W4290861158 modified "2023-09-27" @default.
- W4290861158 title "A machine learning framework to predict kidney graft failure with class imbalance using Red Deer algorithm" @default.
- W4290861158 cites W1657646951 @default.
- W4290861158 cites W1976857190 @default.
- W4290861158 cites W2010196000 @default.
- W4290861158 cites W2019477238 @default.
- W4290861158 cites W2026643052 @default.
- W4290861158 cites W2061438946 @default.
- W4290861158 cites W2069914810 @default.
- W4290861158 cites W2072147752 @default.
- W4290861158 cites W2083780116 @default.
- W4290861158 cites W2084514312 @default.
- W4290861158 cites W2113820196 @default.
- W4290861158 cites W2289401992 @default.
- W4290861158 cites W2507473779 @default.
- W4290861158 cites W2586821431 @default.
- W4290861158 cites W2747116615 @default.
- W4290861158 cites W2768353035 @default.
- W4290861158 cites W2969720828 @default.
- W4290861158 cites W2970602317 @default.
- W4290861158 cites W3001625252 @default.
- W4290861158 cites W3003734944 @default.
- W4290861158 cites W3007540098 @default.
- W4290861158 cites W3011016572 @default.
- W4290861158 cites W3041665714 @default.
- W4290861158 cites W3046931506 @default.
- W4290861158 cites W3118982336 @default.
- W4290861158 cites W3154045578 @default.
- W4290861158 cites W3160457727 @default.
- W4290861158 cites W3164199608 @default.
- W4290861158 cites W3182606315 @default.
- W4290861158 cites W3185843640 @default.
- W4290861158 cites W3212504472 @default.
- W4290861158 cites W4206157488 @default.
- W4290861158 cites W4210401277 @default.
- W4290861158 cites W4221102806 @default.
- W4290861158 doi "https://doi.org/10.1016/j.eswa.2022.118515" @default.
- W4290861158 hasPublicationYear "2022" @default.
- W4290861158 type Work @default.
- W4290861158 citedByCount "4" @default.
- W4290861158 countsByYear W42908611582022 @default.
- W4290861158 countsByYear W42908611582023 @default.
- W4290861158 crossrefType "journal-article" @default.
- W4290861158 hasAuthorship W4290861158A5056850967 @default.
- W4290861158 hasAuthorship W4290861158A5069004483 @default.
- W4290861158 hasConcept C119857082 @default.
- W4290861158 hasConcept C12267149 @default.
- W4290861158 hasConcept C124101348 @default.
- W4290861158 hasConcept C136536468 @default.
- W4290861158 hasConcept C141071460 @default.
- W4290861158 hasConcept C148483581 @default.
- W4290861158 hasConcept C153180895 @default.
- W4290861158 hasConcept C154945302 @default.
- W4290861158 hasConcept C2780303639 @default.
- W4290861158 hasConcept C2911091166 @default.
- W4290861158 hasConcept C41008148 @default.
- W4290861158 hasConcept C71924100 @default.
- W4290861158 hasConcept C73555534 @default.
- W4290861158 hasConcept C84525736 @default.
- W4290861158 hasConceptScore W4290861158C119857082 @default.
- W4290861158 hasConceptScore W4290861158C12267149 @default.
- W4290861158 hasConceptScore W4290861158C124101348 @default.
- W4290861158 hasConceptScore W4290861158C136536468 @default.
- W4290861158 hasConceptScore W4290861158C141071460 @default.
- W4290861158 hasConceptScore W4290861158C148483581 @default.
- W4290861158 hasConceptScore W4290861158C153180895 @default.
- W4290861158 hasConceptScore W4290861158C154945302 @default.
- W4290861158 hasConceptScore W4290861158C2780303639 @default.
- W4290861158 hasConceptScore W4290861158C2911091166 @default.
- W4290861158 hasConceptScore W4290861158C41008148 @default.
- W4290861158 hasConceptScore W4290861158C71924100 @default.
- W4290861158 hasConceptScore W4290861158C73555534 @default.
- W4290861158 hasConceptScore W4290861158C84525736 @default.
- W4290861158 hasLocation W42908611581 @default.
- W4290861158 hasOpenAccess W4290861158 @default.
- W4290861158 hasPrimaryLocation W42908611581 @default.
- W4290861158 hasRelatedWork W2041399278 @default.
- W4290861158 hasRelatedWork W2136184105 @default.
- W4290861158 hasRelatedWork W3013515612 @default.
- W4290861158 hasRelatedWork W3034132578 @default.
- W4290861158 hasRelatedWork W3194946101 @default.
- W4290861158 hasRelatedWork W4224946860 @default.
- W4290861158 hasRelatedWork W4321636153 @default.
- W4290861158 hasRelatedWork W4385625096 @default.
- W4290861158 hasRelatedWork W2187500075 @default.
- W4290861158 hasRelatedWork W2345184372 @default.
- W4290861158 hasVolume "210" @default.
- W4290861158 isParatext "false" @default.
- W4290861158 isRetracted "false" @default.
- W4290861158 workType "article" @default.