Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290944123> ?p ?o ?g. }
- W4290944123 abstract "Regression models are learned over multiple variables, e.g., using engine torque and speed to predict its fuel consumption. In practice, the values of these variables are often collected separately, e.g., by different sensors in a vehicle, and need to be aligned first in a tuple before learning. Unfortunately, flowing to various issues like network delays, values generated at the same time could be recorded with different timestamps, making the alignment diffcult. According to our study in a vehicle manufacturer, engine torque, speed and fuel consumption values are mostly not recorded with the same timestamps. Aligning tuples by simply concatenating values of variables with equal timestamps leads to limited data for learning regression model. To deal with timestamp variations, existing time series matching techniques rely on the similarity of values and timestamps, which unfortunately are very likely to be absent among the variables in regression (no similarity between engine torque and speed values). In this sense, we propose to bridge tuple alignment and regression. Rather than similar values and timestamps, we align the values of different variables in a tuple that (i) are recorded in a short period, i.e., time constraint, and more importantly (ii) coincide well with the regression model, known as model constraint. Our theoretical and technical contributions include (1) formulating the problem of tuple alignment with time and model constraints, (2) proving NP-completeness of the problem, (3) devising an approximation algorithm with performance guarantee, and (4) proposing efficient pruning strategies for the algorithm. Experiments over real world datasets, including the aforesaid engine data collected by a vehicle manufacturer, demonstrate that our proposal outperforms the existing methods on alignment accuracy and improves regression precision." @default.
- W4290944123 created "2022-08-13" @default.
- W4290944123 creator A5014346487 @default.
- W4290944123 creator A5034579434 @default.
- W4290944123 creator A5050152830 @default.
- W4290944123 creator A5074400808 @default.
- W4290944123 creator A5084430029 @default.
- W4290944123 date "2022-08-14" @default.
- W4290944123 modified "2023-10-16" @default.
- W4290944123 title "On Aligning Tuples for Regression" @default.
- W4290944123 cites W1534304300 @default.
- W4290944123 cites W1990190154 @default.
- W4290944123 cites W2065316309 @default.
- W4290944123 cites W2067047477 @default.
- W4290944123 cites W2071016718 @default.
- W4290944123 cites W2080501585 @default.
- W4290944123 cites W2089117840 @default.
- W4290944123 cites W2100169722 @default.
- W4290944123 cites W2118371392 @default.
- W4290944123 cites W2130887504 @default.
- W4290944123 cites W2140118062 @default.
- W4290944123 cites W2161163216 @default.
- W4290944123 cites W2190899134 @default.
- W4290944123 cites W2401610261 @default.
- W4290944123 cites W2427847169 @default.
- W4290944123 cites W2515433074 @default.
- W4290944123 cites W2766098680 @default.
- W4290944123 cites W2923846981 @default.
- W4290944123 cites W2963337680 @default.
- W4290944123 cites W3102476541 @default.
- W4290944123 cites W3174086521 @default.
- W4290944123 cites W4252390953 @default.
- W4290944123 doi "https://doi.org/10.1145/3534678.3539373" @default.
- W4290944123 hasPublicationYear "2022" @default.
- W4290944123 type Work @default.
- W4290944123 citedByCount "1" @default.
- W4290944123 countsByYear W42909441232023 @default.
- W4290944123 crossrefType "proceedings-article" @default.
- W4290944123 hasAuthorship W4290944123A5014346487 @default.
- W4290944123 hasAuthorship W4290944123A5034579434 @default.
- W4290944123 hasAuthorship W4290944123A5050152830 @default.
- W4290944123 hasAuthorship W4290944123A5074400808 @default.
- W4290944123 hasAuthorship W4290944123A5084430029 @default.
- W4290944123 hasBestOaLocation W42909441231 @default.
- W4290944123 hasConcept C103278499 @default.
- W4290944123 hasConcept C105795698 @default.
- W4290944123 hasConcept C108010975 @default.
- W4290944123 hasConcept C113954288 @default.
- W4290944123 hasConcept C11413529 @default.
- W4290944123 hasConcept C115961682 @default.
- W4290944123 hasConcept C118615104 @default.
- W4290944123 hasConcept C118930307 @default.
- W4290944123 hasConcept C119857082 @default.
- W4290944123 hasConcept C124101348 @default.
- W4290944123 hasConcept C152877465 @default.
- W4290944123 hasConcept C154945302 @default.
- W4290944123 hasConcept C2524010 @default.
- W4290944123 hasConcept C2776036281 @default.
- W4290944123 hasConcept C33923547 @default.
- W4290944123 hasConcept C41008148 @default.
- W4290944123 hasConcept C48921125 @default.
- W4290944123 hasConcept C6557445 @default.
- W4290944123 hasConcept C79403827 @default.
- W4290944123 hasConcept C83546350 @default.
- W4290944123 hasConcept C86803240 @default.
- W4290944123 hasConceptScore W4290944123C103278499 @default.
- W4290944123 hasConceptScore W4290944123C105795698 @default.
- W4290944123 hasConceptScore W4290944123C108010975 @default.
- W4290944123 hasConceptScore W4290944123C113954288 @default.
- W4290944123 hasConceptScore W4290944123C11413529 @default.
- W4290944123 hasConceptScore W4290944123C115961682 @default.
- W4290944123 hasConceptScore W4290944123C118615104 @default.
- W4290944123 hasConceptScore W4290944123C118930307 @default.
- W4290944123 hasConceptScore W4290944123C119857082 @default.
- W4290944123 hasConceptScore W4290944123C124101348 @default.
- W4290944123 hasConceptScore W4290944123C152877465 @default.
- W4290944123 hasConceptScore W4290944123C154945302 @default.
- W4290944123 hasConceptScore W4290944123C2524010 @default.
- W4290944123 hasConceptScore W4290944123C2776036281 @default.
- W4290944123 hasConceptScore W4290944123C33923547 @default.
- W4290944123 hasConceptScore W4290944123C41008148 @default.
- W4290944123 hasConceptScore W4290944123C48921125 @default.
- W4290944123 hasConceptScore W4290944123C6557445 @default.
- W4290944123 hasConceptScore W4290944123C79403827 @default.
- W4290944123 hasConceptScore W4290944123C83546350 @default.
- W4290944123 hasConceptScore W4290944123C86803240 @default.
- W4290944123 hasLocation W42909441231 @default.
- W4290944123 hasOpenAccess W4290944123 @default.
- W4290944123 hasPrimaryLocation W42909441231 @default.
- W4290944123 hasRelatedWork W2006787297 @default.
- W4290944123 hasRelatedWork W2050108094 @default.
- W4290944123 hasRelatedWork W2086833975 @default.
- W4290944123 hasRelatedWork W2141014803 @default.
- W4290944123 hasRelatedWork W2251030740 @default.
- W4290944123 hasRelatedWork W2349648642 @default.
- W4290944123 hasRelatedWork W2586811226 @default.
- W4290944123 hasRelatedWork W2991616676 @default.
- W4290944123 hasRelatedWork W31220157 @default.
- W4290944123 hasRelatedWork W3215700490 @default.
- W4290944123 isParatext "false" @default.