Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290958408> ?p ?o ?g. }
- W4290958408 endingPage "117806" @default.
- W4290958408 startingPage "117806" @default.
- W4290958408 abstract "Nowadays, both fingerprint and palmprint databases are massive and whose size has exceeded millions. Therefore, applying a filtering technique, such as indexing, is vital for automatic fingerprint/palmprint identification systems. Geometric distortion present in fingerprints and the creases in palmprints have a significant drop in recognition accuracy. Moreover, protecting an enrollment template is an important and challenging issue today. Template protection is a technique to convert an unprotected enrollment biometric template to a protected biometric template and is used to prevent the access of illegal users and attackers to the enrolled biometric template. Hence, in this paper, we propose a new feature called the middle of the triangle’s side (MTS) derived from each minutiae pair of a triangle-based representation to mitigate the negative effect of the geometric distortion and creases. Furthermore, they can be used as a feature transformation to protect templates. For computing MTSs, we first estimate the quality of input images and then extract reliable minutiae from the input images. After that, we apply the Delaunay triangulation of order k to minutiae for obtaining a triangle-based representation. Then, we calculate the median of sides of each triangle for extracting MTSs. To obtain the direction of each MTS, we use the direction difference between each minutiae pair placed in both vertices of the triangle’s side. This makes MTSs robust against fingerprint and palmprint rotation. Afterward, we obtain new triangles by connecting the MTSs of each triangle and weight feature vectors based on the quality of minutiae, and generate indices. Finally, we propose a new feature vector for triangles to increase the recognition accuracy. Experimental results on two public fingerprint databases containing distorted fingerprints, and two public palmprint databases containing latent prints, show that MTSs are more robust than minutiae against geometric distortion. Also, MTSs are secure, and its reason is that minutiae direction and location are changed. In addition, the number of MTSs is more than minutiae, making them more appropriate for prints with a low number of minutiae. Our experimental results show that MTSs and the proposed indexing algorithm can obtain good results for distorted fingerprints and latent palmprints." @default.
- W4290958408 created "2022-08-13" @default.
- W4290958408 creator A5022205078 @default.
- W4290958408 creator A5045469910 @default.
- W4290958408 creator A5068752043 @default.
- W4290958408 creator A5071149264 @default.
- W4290958408 creator A5084352657 @default.
- W4290958408 date "2022-11-01" @default.
- W4290958408 modified "2023-09-30" @default.
- W4290958408 title "A secure and robust indexing algorithm for distorted fingerprints and latent palmprints" @default.
- W4290958408 cites W1162253458 @default.
- W4290958408 cites W1554813035 @default.
- W4290958408 cites W1817805185 @default.
- W4290958408 cites W1853627316 @default.
- W4290958408 cites W1969768923 @default.
- W4290958408 cites W1981446961 @default.
- W4290958408 cites W1985865960 @default.
- W4290958408 cites W1993325124 @default.
- W4290958408 cites W2003178620 @default.
- W4290958408 cites W2005399687 @default.
- W4290958408 cites W2021431616 @default.
- W4290958408 cites W2033139834 @default.
- W4290958408 cites W2048547948 @default.
- W4290958408 cites W2051063947 @default.
- W4290958408 cites W2061272711 @default.
- W4290958408 cites W2071203477 @default.
- W4290958408 cites W2096163668 @default.
- W4290958408 cites W2101791907 @default.
- W4290958408 cites W2103514961 @default.
- W4290958408 cites W2109688480 @default.
- W4290958408 cites W2126870276 @default.
- W4290958408 cites W2129074184 @default.
- W4290958408 cites W2131461205 @default.
- W4290958408 cites W2145933558 @default.
- W4290958408 cites W2148082513 @default.
- W4290958408 cites W2150102481 @default.
- W4290958408 cites W2160367574 @default.
- W4290958408 cites W2306842046 @default.
- W4290958408 cites W2402841470 @default.
- W4290958408 cites W2435004937 @default.
- W4290958408 cites W2597505717 @default.
- W4290958408 cites W2750939749 @default.
- W4290958408 cites W2770355832 @default.
- W4290958408 cites W2779552601 @default.
- W4290958408 cites W2790644461 @default.
- W4290958408 cites W2797490324 @default.
- W4290958408 cites W2809437382 @default.
- W4290958408 cites W2902383220 @default.
- W4290958408 cites W2957766046 @default.
- W4290958408 cites W2997175715 @default.
- W4290958408 cites W3005851070 @default.
- W4290958408 cites W3039081820 @default.
- W4290958408 cites W3092360750 @default.
- W4290958408 cites W3120240533 @default.
- W4290958408 cites W3123311897 @default.
- W4290958408 cites W3128290931 @default.
- W4290958408 cites W3133405956 @default.
- W4290958408 cites W3134362348 @default.
- W4290958408 cites W3170737774 @default.
- W4290958408 cites W3198735655 @default.
- W4290958408 cites W4200336672 @default.
- W4290958408 cites W4220675832 @default.
- W4290958408 cites W4224296167 @default.
- W4290958408 doi "https://doi.org/10.1016/j.eswa.2022.117806" @default.
- W4290958408 hasPublicationYear "2022" @default.
- W4290958408 type Work @default.
- W4290958408 citedByCount "5" @default.
- W4290958408 countsByYear W42909584082023 @default.
- W4290958408 crossrefType "journal-article" @default.
- W4290958408 hasAuthorship W4290958408A5022205078 @default.
- W4290958408 hasAuthorship W4290958408A5045469910 @default.
- W4290958408 hasAuthorship W4290958408A5068752043 @default.
- W4290958408 hasAuthorship W4290958408A5071149264 @default.
- W4290958408 hasAuthorship W4290958408A5084352657 @default.
- W4290958408 hasConcept C11413529 @default.
- W4290958408 hasConcept C115961682 @default.
- W4290958408 hasConcept C126780896 @default.
- W4290958408 hasConcept C138885662 @default.
- W4290958408 hasConcept C153180895 @default.
- W4290958408 hasConcept C154945302 @default.
- W4290958408 hasConcept C168406668 @default.
- W4290958408 hasConcept C184297639 @default.
- W4290958408 hasConcept C194257627 @default.
- W4290958408 hasConcept C2776257435 @default.
- W4290958408 hasConcept C2776401178 @default.
- W4290958408 hasConcept C2777826928 @default.
- W4290958408 hasConcept C31258907 @default.
- W4290958408 hasConcept C31972630 @default.
- W4290958408 hasConcept C41008148 @default.
- W4290958408 hasConcept C41895202 @default.
- W4290958408 hasConcept C56435381 @default.
- W4290958408 hasConcept C67174900 @default.
- W4290958408 hasConcept C68010082 @default.
- W4290958408 hasConcept C75165309 @default.
- W4290958408 hasConceptScore W4290958408C11413529 @default.
- W4290958408 hasConceptScore W4290958408C115961682 @default.
- W4290958408 hasConceptScore W4290958408C126780896 @default.
- W4290958408 hasConceptScore W4290958408C138885662 @default.