Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290958435> ?p ?o ?g. }
- W4290958435 endingPage "117754" @default.
- W4290958435 startingPage "117754" @default.
- W4290958435 abstract "Rotating equipment is considered as a key component in several industrial sectors. In fact, the continuous operation of many industrial machines such as sub-sea pumps and gas turbines relies on the correct performance of their rotating equipment. In order to reduce the probability of malfunctions in this equipment, condition monitoring, and fault diagnosis systems are essential. In this work, a novel approach is proposed to perform fault diagnosis in rotating equipment based on permutation entropy, signal processing, and artificial intelligence. To that aim, vibration signals are employed for an indication of bearing performance. In order to facilitate fault diagnosis, fault detection and isolation are performed in two separate steps. As first, once a vibration signal is received, the faulty state of the bearing is determined by permutation entropy. In case a faulty state is detected, the fault type is determined using an approach based on signal processing and artificial intelligence. Wavelet packet transform and envelope analysis of the vibration signals are utilized to extract the frequency components of the fault. The proposed approach allows for the automatic selection of a frequency band that includes the characteristic resonance frequency of the fault, which is subject to change in different operational conditions. The method works by extracting the proper features of the signals that are used to decide about the faulty bearing’s condition by a multi-output adaptive neuro-fuzzy inference system classifier. The effectiveness of the approach is assessed by the Case Western Reserve University dataset: the analysis demonstrates the proposed method’s capabilities in accurately diagnosing faults in rotating equipment as compared to existing approaches." @default.
- W4290958435 created "2022-08-13" @default.
- W4290958435 creator A5005938503 @default.
- W4290958435 creator A5036279758 @default.
- W4290958435 creator A5037708866 @default.
- W4290958435 creator A5072166793 @default.
- W4290958435 date "2022-11-01" @default.
- W4290958435 modified "2023-10-17" @default.
- W4290958435 title "Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier" @default.
- W4290958435 cites W1862394037 @default.
- W4290958435 cites W1964511482 @default.
- W4290958435 cites W1967352108 @default.
- W4290958435 cites W1970452021 @default.
- W4290958435 cites W1979117586 @default.
- W4290958435 cites W2000911430 @default.
- W4290958435 cites W2014683958 @default.
- W4290958435 cites W2016324154 @default.
- W4290958435 cites W2019207321 @default.
- W4290958435 cites W2036259765 @default.
- W4290958435 cites W2059518577 @default.
- W4290958435 cites W2060540122 @default.
- W4290958435 cites W2086315826 @default.
- W4290958435 cites W2086510597 @default.
- W4290958435 cites W2091630872 @default.
- W4290958435 cites W2133661263 @default.
- W4290958435 cites W2189002369 @default.
- W4290958435 cites W2273817119 @default.
- W4290958435 cites W243674440 @default.
- W4290958435 cites W2766485183 @default.
- W4290958435 cites W2768753204 @default.
- W4290958435 cites W2792018332 @default.
- W4290958435 cites W2795016359 @default.
- W4290958435 cites W2801396593 @default.
- W4290958435 cites W2810292802 @default.
- W4290958435 cites W2811138152 @default.
- W4290958435 cites W2962769582 @default.
- W4290958435 cites W2970706158 @default.
- W4290958435 cites W2974733188 @default.
- W4290958435 cites W2978077076 @default.
- W4290958435 cites W3022604663 @default.
- W4290958435 cites W3030489213 @default.
- W4290958435 cites W3033667082 @default.
- W4290958435 cites W3047323667 @default.
- W4290958435 cites W3048264598 @default.
- W4290958435 cites W3049734107 @default.
- W4290958435 cites W3083531094 @default.
- W4290958435 cites W3090682168 @default.
- W4290958435 cites W3090887241 @default.
- W4290958435 cites W867303916 @default.
- W4290958435 doi "https://doi.org/10.1016/j.eswa.2022.117754" @default.
- W4290958435 hasPublicationYear "2022" @default.
- W4290958435 type Work @default.
- W4290958435 citedByCount "35" @default.
- W4290958435 countsByYear W42909584352022 @default.
- W4290958435 countsByYear W42909584352023 @default.
- W4290958435 crossrefType "journal-article" @default.
- W4290958435 hasAuthorship W4290958435A5005938503 @default.
- W4290958435 hasAuthorship W4290958435A5036279758 @default.
- W4290958435 hasAuthorship W4290958435A5037708866 @default.
- W4290958435 hasAuthorship W4290958435A5072166793 @default.
- W4290958435 hasBestOaLocation W42909584351 @default.
- W4290958435 hasConcept C104267543 @default.
- W4290958435 hasConcept C106301342 @default.
- W4290958435 hasConcept C119599485 @default.
- W4290958435 hasConcept C121332964 @default.
- W4290958435 hasConcept C127413603 @default.
- W4290958435 hasConcept C152745839 @default.
- W4290958435 hasConcept C153180895 @default.
- W4290958435 hasConcept C154945302 @default.
- W4290958435 hasConcept C155777637 @default.
- W4290958435 hasConcept C172707124 @default.
- W4290958435 hasConcept C196216189 @default.
- W4290958435 hasConcept C198394728 @default.
- W4290958435 hasConcept C2775846686 @default.
- W4290958435 hasConcept C41008148 @default.
- W4290958435 hasConcept C47432892 @default.
- W4290958435 hasConcept C58166 @default.
- W4290958435 hasConcept C62520636 @default.
- W4290958435 hasConcept C84462506 @default.
- W4290958435 hasConcept C9390403 @default.
- W4290958435 hasConcept C95623464 @default.
- W4290958435 hasConceptScore W4290958435C104267543 @default.
- W4290958435 hasConceptScore W4290958435C106301342 @default.
- W4290958435 hasConceptScore W4290958435C119599485 @default.
- W4290958435 hasConceptScore W4290958435C121332964 @default.
- W4290958435 hasConceptScore W4290958435C127413603 @default.
- W4290958435 hasConceptScore W4290958435C152745839 @default.
- W4290958435 hasConceptScore W4290958435C153180895 @default.
- W4290958435 hasConceptScore W4290958435C154945302 @default.
- W4290958435 hasConceptScore W4290958435C155777637 @default.
- W4290958435 hasConceptScore W4290958435C172707124 @default.
- W4290958435 hasConceptScore W4290958435C196216189 @default.
- W4290958435 hasConceptScore W4290958435C198394728 @default.
- W4290958435 hasConceptScore W4290958435C2775846686 @default.
- W4290958435 hasConceptScore W4290958435C41008148 @default.
- W4290958435 hasConceptScore W4290958435C47432892 @default.
- W4290958435 hasConceptScore W4290958435C58166 @default.
- W4290958435 hasConceptScore W4290958435C62520636 @default.