Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290973164> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4290973164 endingPage "13" @default.
- W4290973164 startingPage "1" @default.
- W4290973164 abstract "The improvements in computation facility and technology support the development and implementation of automatic methods for medical data assessment. This study tries to extend a framework for efficiently classifying chest radiographs (X-rays) into normal/COVID-19 class. The proposed framework consists subsequent phases: (i) image resizing, (ii) deep features extraction using a pretrained deep learning method (PDLM), (iii) handcrafted feature extraction, (iv) feature optimization with Brownian Mayfly-Algorithm (BMA), (v) serial integration of optimized features, and (vi) binary classification with 10-fold cross validation. In addition, this work implements two methodologies: (i) performance evaluation of the existing PDLM in the literature and (ii) improving the COVID-19 detection performance of chosen PDLM with this proposal. The experimental investigation of this study authenticates that the effort performed using pretrained VGG16 with SoftMax helped get a classification accuracy of >94%. Further, the research performed using the proposed framework with BMA selected features (VGG16 + handcrafted features) helps achieve a classification accuracy of 99.17% on the chosen X-ray image database. This outcome proves the scientific importance of the implemented framework, and in the future, this proposal can be adopted to inspect the clinically collected X-rays." @default.
- W4290973164 created "2022-08-13" @default.
- W4290973164 creator A5024362283 @default.
- W4290973164 creator A5037566676 @default.
- W4290973164 creator A5047701985 @default.
- W4290973164 creator A5049662063 @default.
- W4290973164 date "2022-08-11" @default.
- W4290973164 modified "2023-10-09" @default.
- W4290973164 title "Framework for Classification of Chest X-Rays into Normal/COVID-19 Using Brownian-Mayfly-Algorithm Selected Hybrid Features" @default.
- W4290973164 cites W2158198839 @default.
- W4290973164 cites W2173552567 @default.
- W4290973164 cites W2805759997 @default.
- W4290973164 cites W2924911266 @default.
- W4290973164 cites W2932604174 @default.
- W4290973164 cites W2956123709 @default.
- W4290973164 cites W2965867178 @default.
- W4290973164 cites W2998957378 @default.
- W4290973164 cites W3013601031 @default.
- W4290973164 cites W3017644243 @default.
- W4290973164 cites W3019531985 @default.
- W4290973164 cites W3021921998 @default.
- W4290973164 cites W3024801014 @default.
- W4290973164 cites W3029517552 @default.
- W4290973164 cites W3030621456 @default.
- W4290973164 cites W3036552116 @default.
- W4290973164 cites W3040660552 @default.
- W4290973164 cites W3044240928 @default.
- W4290973164 cites W3096271249 @default.
- W4290973164 cites W3125771089 @default.
- W4290973164 cites W3146080885 @default.
- W4290973164 cites W3155473047 @default.
- W4290973164 cites W3162162849 @default.
- W4290973164 cites W3162351260 @default.
- W4290973164 cites W3164615753 @default.
- W4290973164 cites W3208239477 @default.
- W4290973164 cites W3213698765 @default.
- W4290973164 cites W4200425106 @default.
- W4290973164 cites W4210385745 @default.
- W4290973164 doi "https://doi.org/10.1155/2022/6475808" @default.
- W4290973164 hasPublicationYear "2022" @default.
- W4290973164 type Work @default.
- W4290973164 citedByCount "2" @default.
- W4290973164 countsByYear W42909731642023 @default.
- W4290973164 crossrefType "journal-article" @default.
- W4290973164 hasAuthorship W4290973164A5024362283 @default.
- W4290973164 hasAuthorship W4290973164A5037566676 @default.
- W4290973164 hasAuthorship W4290973164A5047701985 @default.
- W4290973164 hasAuthorship W4290973164A5049662063 @default.
- W4290973164 hasBestOaLocation W42909731641 @default.
- W4290973164 hasConcept C11413529 @default.
- W4290973164 hasConcept C115961682 @default.
- W4290973164 hasConcept C138885662 @default.
- W4290973164 hasConcept C153180895 @default.
- W4290973164 hasConcept C154945302 @default.
- W4290973164 hasConcept C188441871 @default.
- W4290973164 hasConcept C2776401178 @default.
- W4290973164 hasConcept C41008148 @default.
- W4290973164 hasConcept C41895202 @default.
- W4290973164 hasConcept C52622490 @default.
- W4290973164 hasConcept C81363708 @default.
- W4290973164 hasConceptScore W4290973164C11413529 @default.
- W4290973164 hasConceptScore W4290973164C115961682 @default.
- W4290973164 hasConceptScore W4290973164C138885662 @default.
- W4290973164 hasConceptScore W4290973164C153180895 @default.
- W4290973164 hasConceptScore W4290973164C154945302 @default.
- W4290973164 hasConceptScore W4290973164C188441871 @default.
- W4290973164 hasConceptScore W4290973164C2776401178 @default.
- W4290973164 hasConceptScore W4290973164C41008148 @default.
- W4290973164 hasConceptScore W4290973164C41895202 @default.
- W4290973164 hasConceptScore W4290973164C52622490 @default.
- W4290973164 hasConceptScore W4290973164C81363708 @default.
- W4290973164 hasLocation W42909731641 @default.
- W4290973164 hasLocation W42909731642 @default.
- W4290973164 hasOpenAccess W4290973164 @default.
- W4290973164 hasPrimaryLocation W42909731641 @default.
- W4290973164 hasRelatedWork W2899027234 @default.
- W4290973164 hasRelatedWork W2962876041 @default.
- W4290973164 hasRelatedWork W2980176872 @default.
- W4290973164 hasRelatedWork W2997424368 @default.
- W4290973164 hasRelatedWork W3095506574 @default.
- W4290973164 hasRelatedWork W3107204728 @default.
- W4290973164 hasRelatedWork W3190449293 @default.
- W4290973164 hasRelatedWork W4220732972 @default.
- W4290973164 hasRelatedWork W4226420367 @default.
- W4290973164 hasRelatedWork W4287591324 @default.
- W4290973164 hasVolume "2022" @default.
- W4290973164 isParatext "false" @default.
- W4290973164 isRetracted "false" @default.
- W4290973164 workType "article" @default.