Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290985846> ?p ?o ?g. }
- W4290985846 abstract "Exercise cardiovascular magnetic resonance (Ex-CMR) is a promising stress imaging test for coronary artery disease (CAD). However, Ex-CMR requires accelerated imaging techniques that result in significant aliasing artifacts. Our goal was to develop and evaluate a free-breathing and electrocardiogram (ECG)-free real-time cine with deep learning (DL)-based radial acceleration for Ex-CMR.A 3D (2D + time) convolutional neural network was implemented to suppress artifacts from aliased radial cine images. The network was trained using synthetic real-time radial cine images simulated using breath-hold, ECG-gated segmented Cartesian k-space data acquired at 3 T from 503 patients at rest. A prototype real-time radial sequence with acceleration rate = 12 was used to collect images with inline DL reconstruction. Performance was evaluated in 8 healthy subjects in whom only rest images were collected. Subsequently, 14 subjects (6 healthy and 8 patients with suspected CAD) were prospectively recruited for an Ex-CMR to evaluate image quality. At rest (n = 22), standard breath-hold ECG-gated Cartesian segmented cine and free-breathing ECG-free real-time radial cine images were acquired. During post-exercise stress (n = 14), only real-time radial cine images were acquired. Three readers evaluated residual artifact level in all collected images on a 4-point Likert scale (1-non-diagnostic, 2-severe, 3-moderate, 4-minimal).The DL model substantially suppressed artifacts in real-time radial cine images acquired at rest and during post-exercise stress. In real-time images at rest, 89.4% of scores were moderate to minimal. The mean score was 3.3 ± 0.7, representing increased (P < 0.001) artifacts compared to standard cine (3.9 ± 0.3). In real-time images during post-exercise stress, 84.6% of scores were moderate to minimal, and the mean artifact level score was 3.1 ± 0.6. Comparison of left-ventricular (LV) measures derived from standard and real-time cine at rest showed differences in LV end-diastolic volume (3.0 mL [- 11.7, 17.8], P = 0.320) that were not significantly different from zero. Differences in measures of LV end-systolic volume (7.0 mL [- 1.3, 15.3], P < 0.001) and LV ejection fraction (- 5.0% [- 11.1, 1.0], P < 0.001) were significant. Total inline reconstruction time of real-time radial images was 16.6 ms per frame.Our proof-of-concept study demonstrated the feasibility of inline real-time cine with DL-based radial acceleration for Ex-CMR." @default.
- W4290985846 created "2022-08-13" @default.
- W4290985846 creator A5002927848 @default.
- W4290985846 creator A5005568716 @default.
- W4290985846 creator A5021741377 @default.
- W4290985846 creator A5022462204 @default.
- W4290985846 creator A5025304074 @default.
- W4290985846 creator A5035444537 @default.
- W4290985846 creator A5036901993 @default.
- W4290985846 creator A5045211883 @default.
- W4290985846 creator A5051980614 @default.
- W4290985846 creator A5053533340 @default.
- W4290985846 creator A5065969053 @default.
- W4290985846 creator A5085103605 @default.
- W4290985846 creator A5085159751 @default.
- W4290985846 creator A5085314616 @default.
- W4290985846 creator A5085812830 @default.
- W4290985846 date "2022-08-11" @default.
- W4290985846 modified "2023-10-16" @default.
- W4290985846 title "An inline deep learning based free-breathing ECG-free cine for exercise cardiovascular magnetic resonance" @default.
- W4290985846 cites W1482297123 @default.
- W4290985846 cites W1548050148 @default.
- W4290985846 cites W1851496924 @default.
- W4290985846 cites W1973775896 @default.
- W4290985846 cites W1975792971 @default.
- W4290985846 cites W1989429874 @default.
- W4290985846 cites W2009647387 @default.
- W4290985846 cites W2009709845 @default.
- W4290985846 cites W2092401163 @default.
- W4290985846 cites W2118103155 @default.
- W4290985846 cites W2129884887 @default.
- W4290985846 cites W2132294579 @default.
- W4290985846 cites W2138142274 @default.
- W4290985846 cites W2183605862 @default.
- W4290985846 cites W2265275674 @default.
- W4290985846 cites W2320707747 @default.
- W4290985846 cites W2326520408 @default.
- W4290985846 cites W2345776852 @default.
- W4290985846 cites W2516812301 @default.
- W4290985846 cites W2560712028 @default.
- W4290985846 cites W2573507570 @default.
- W4290985846 cites W2594014149 @default.
- W4290985846 cites W2597259613 @default.
- W4290985846 cites W2755115574 @default.
- W4290985846 cites W2808243856 @default.
- W4290985846 cites W2951539836 @default.
- W4290985846 cites W2962734274 @default.
- W4290985846 cites W3048384642 @default.
- W4290985846 cites W3081686878 @default.
- W4290985846 cites W3085719263 @default.
- W4290985846 cites W3085824602 @default.
- W4290985846 cites W3088113741 @default.
- W4290985846 cites W3112701542 @default.
- W4290985846 cites W3197951326 @default.
- W4290985846 cites W4200601666 @default.
- W4290985846 doi "https://doi.org/10.1186/s12968-022-00879-9" @default.
- W4290985846 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35948936" @default.
- W4290985846 hasPublicationYear "2022" @default.
- W4290985846 type Work @default.
- W4290985846 citedByCount "4" @default.
- W4290985846 countsByYear W42909858462022 @default.
- W4290985846 countsByYear W42909858462023 @default.
- W4290985846 crossrefType "journal-article" @default.
- W4290985846 hasAuthorship W4290985846A5002927848 @default.
- W4290985846 hasAuthorship W4290985846A5005568716 @default.
- W4290985846 hasAuthorship W4290985846A5021741377 @default.
- W4290985846 hasAuthorship W4290985846A5022462204 @default.
- W4290985846 hasAuthorship W4290985846A5025304074 @default.
- W4290985846 hasAuthorship W4290985846A5035444537 @default.
- W4290985846 hasAuthorship W4290985846A5036901993 @default.
- W4290985846 hasAuthorship W4290985846A5045211883 @default.
- W4290985846 hasAuthorship W4290985846A5051980614 @default.
- W4290985846 hasAuthorship W4290985846A5053533340 @default.
- W4290985846 hasAuthorship W4290985846A5065969053 @default.
- W4290985846 hasAuthorship W4290985846A5085103605 @default.
- W4290985846 hasAuthorship W4290985846A5085159751 @default.
- W4290985846 hasAuthorship W4290985846A5085314616 @default.
- W4290985846 hasAuthorship W4290985846A5085812830 @default.
- W4290985846 hasBestOaLocation W42909858461 @default.
- W4290985846 hasConcept C105702510 @default.
- W4290985846 hasConcept C126838900 @default.
- W4290985846 hasConcept C143409427 @default.
- W4290985846 hasConcept C154945302 @default.
- W4290985846 hasConcept C164705383 @default.
- W4290985846 hasConcept C2778213512 @default.
- W4290985846 hasConcept C2779010991 @default.
- W4290985846 hasConcept C2989005 @default.
- W4290985846 hasConcept C39300077 @default.
- W4290985846 hasConcept C41008148 @default.
- W4290985846 hasConcept C71924100 @default.
- W4290985846 hasConceptScore W4290985846C105702510 @default.
- W4290985846 hasConceptScore W4290985846C126838900 @default.
- W4290985846 hasConceptScore W4290985846C143409427 @default.
- W4290985846 hasConceptScore W4290985846C154945302 @default.
- W4290985846 hasConceptScore W4290985846C164705383 @default.
- W4290985846 hasConceptScore W4290985846C2778213512 @default.
- W4290985846 hasConceptScore W4290985846C2779010991 @default.
- W4290985846 hasConceptScore W4290985846C2989005 @default.
- W4290985846 hasConceptScore W4290985846C39300077 @default.
- W4290985846 hasConceptScore W4290985846C41008148 @default.