Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290988772> ?p ?o ?g. }
- W4290988772 endingPage "161" @default.
- W4290988772 startingPage "129" @default.
- W4290988772 abstract "Scientific risk assessment of dammed lakes is vitally important for emergency response planning. In this study, based on the evolution process of the disaster chain, the logic topology structure of dammed lake risk was developed. Then, a quantitative risk assessment model of dammed lake using Bayesian network is developed, which includes three modules of dammed lake hazard evaluation, outburst flood routing simulation, and loss assessment. In the model, the network nodes of each module were quantified using statistical data, empirical model, logical inference, and Monte Carlo method. The failure probability of a dammed lake, and the losses of life and property were calculated. This can be multiplied to assess the risk a dammed lake imposes after the uniformization of each loss type. Based on the socio-economic development and longevity statistics of dammed lakes, a risk-level classification method for dammed lakes is proposed. The Baige dammed lake, which emerged in China in 2018, was chosen as a case study and a risk assessment was conducted. The obtained results showed that the comprehensive risk index of Baige dammed lake is 0.7339 under the condition without manual intervention, identifying it as the extra-high level according to the classification. These results are in accordance with the actual condition, which corroborates the reasonability of the proposed model. The model can quickly and quantitatively evaluate the overall risk of a dammed lake and provide a reference for decision-making in a rapid emergency response scenario." @default.
- W4290988772 created "2022-08-13" @default.
- W4290988772 creator A5025020169 @default.
- W4290988772 creator A5057512058 @default.
- W4290988772 creator A5081722062 @default.
- W4290988772 creator A5082013076 @default.
- W4290988772 date "2022-08-10" @default.
- W4290988772 modified "2023-10-16" @default.
- W4290988772 title "Risk assessment of dammed lakes in China based on Bayesian network" @default.
- W4290988772 cites W1589061952 @default.
- W4290988772 cites W1721621710 @default.
- W4290988772 cites W1963802162 @default.
- W4290988772 cites W1974853076 @default.
- W4290988772 cites W1976578817 @default.
- W4290988772 cites W1995562738 @default.
- W4290988772 cites W2001391324 @default.
- W4290988772 cites W2003103141 @default.
- W4290988772 cites W2009809920 @default.
- W4290988772 cites W2019509828 @default.
- W4290988772 cites W2020287411 @default.
- W4290988772 cites W2031419654 @default.
- W4290988772 cites W2032616523 @default.
- W4290988772 cites W2066821798 @default.
- W4290988772 cites W2068216760 @default.
- W4290988772 cites W2072519407 @default.
- W4290988772 cites W2075563762 @default.
- W4290988772 cites W2076915926 @default.
- W4290988772 cites W2078529379 @default.
- W4290988772 cites W2094211267 @default.
- W4290988772 cites W2110593262 @default.
- W4290988772 cites W2116308328 @default.
- W4290988772 cites W2144405045 @default.
- W4290988772 cites W2158134823 @default.
- W4290988772 cites W2333052787 @default.
- W4290988772 cites W2344612242 @default.
- W4290988772 cites W2778139459 @default.
- W4290988772 cites W2901631816 @default.
- W4290988772 cites W2943844914 @default.
- W4290988772 cites W2955360971 @default.
- W4290988772 cites W2965579150 @default.
- W4290988772 cites W2990162685 @default.
- W4290988772 cites W3014561777 @default.
- W4290988772 cites W3014776961 @default.
- W4290988772 cites W3018453954 @default.
- W4290988772 cites W3026514081 @default.
- W4290988772 cites W3033617537 @default.
- W4290988772 cites W3042134494 @default.
- W4290988772 cites W3088297322 @default.
- W4290988772 cites W3139520133 @default.
- W4290988772 cites W3182253448 @default.
- W4290988772 cites W3211973648 @default.
- W4290988772 cites W3215869758 @default.
- W4290988772 cites W4220921445 @default.
- W4290988772 cites W4299670631 @default.
- W4290988772 cites W47883197 @default.
- W4290988772 doi "https://doi.org/10.1007/s11069-022-05547-w" @default.
- W4290988772 hasPublicationYear "2022" @default.
- W4290988772 type Work @default.
- W4290988772 citedByCount "0" @default.
- W4290988772 crossrefType "journal-article" @default.
- W4290988772 hasAuthorship W4290988772A5025020169 @default.
- W4290988772 hasAuthorship W4290988772A5057512058 @default.
- W4290988772 hasAuthorship W4290988772A5081722062 @default.
- W4290988772 hasAuthorship W4290988772A5082013076 @default.
- W4290988772 hasBestOaLocation W42909887722 @default.
- W4290988772 hasConcept C105795698 @default.
- W4290988772 hasConcept C12174686 @default.
- W4290988772 hasConcept C127313418 @default.
- W4290988772 hasConcept C153294291 @default.
- W4290988772 hasConcept C166957645 @default.
- W4290988772 hasConcept C187320778 @default.
- W4290988772 hasConcept C18903297 @default.
- W4290988772 hasConcept C205649164 @default.
- W4290988772 hasConcept C33724603 @default.
- W4290988772 hasConcept C33923547 @default.
- W4290988772 hasConcept C38652104 @default.
- W4290988772 hasConcept C39410599 @default.
- W4290988772 hasConcept C39432304 @default.
- W4290988772 hasConcept C41008148 @default.
- W4290988772 hasConcept C49261128 @default.
- W4290988772 hasConcept C74256435 @default.
- W4290988772 hasConcept C76886044 @default.
- W4290988772 hasConcept C86803240 @default.
- W4290988772 hasConceptScore W4290988772C105795698 @default.
- W4290988772 hasConceptScore W4290988772C12174686 @default.
- W4290988772 hasConceptScore W4290988772C127313418 @default.
- W4290988772 hasConceptScore W4290988772C153294291 @default.
- W4290988772 hasConceptScore W4290988772C166957645 @default.
- W4290988772 hasConceptScore W4290988772C187320778 @default.
- W4290988772 hasConceptScore W4290988772C18903297 @default.
- W4290988772 hasConceptScore W4290988772C205649164 @default.
- W4290988772 hasConceptScore W4290988772C33724603 @default.
- W4290988772 hasConceptScore W4290988772C33923547 @default.
- W4290988772 hasConceptScore W4290988772C38652104 @default.
- W4290988772 hasConceptScore W4290988772C39410599 @default.
- W4290988772 hasConceptScore W4290988772C39432304 @default.
- W4290988772 hasConceptScore W4290988772C41008148 @default.
- W4290988772 hasConceptScore W4290988772C49261128 @default.