Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290989080> ?p ?o ?g. }
- W4290989080 endingPage "6855" @default.
- W4290989080 startingPage "6843" @default.
- W4290989080 abstract "This study proposes a low-cost and “proof-of-concept” methodology to obtain high spatial resolution soil moisture (SM) via processing reflected Global Positioning System (GPS) and a multispectral camera data acquired by small Unmanned Aircraft System (UAS) platforms. An SM estimation model is developed using a random forest (RF) machine-learning (ML) algorithm by combining features obtained from reflected GPS signals (collected by smartphones and commercial off the shelf receivers) in conjunction with ancillary vegetation indices from the multispectral camera data. The proposed ML algorithm uses <i>in-situ</i> SM measurements acquired via SM probes as labels. A preliminary field experiment was conducted on 210 m by 110 m (2.31 ha) crop fields (corn and cotton) in 2020 (from January to November, including crop planting through senescence time period) at Mississippi State University (MSU)'s the heavily instrumented North Farm to acquire data needed for the ML model to train and test. Our results showed that both fields could be covered by GPS reflectometry measurements with about 13 minutes of flight time at a 15-m altitude, and SM can be mapped with 5m × 5m spatial resolution (corresponding to the elongated first Fresnel zone). The model is trained with and validated against eight <i>in-situ</i> SM station datasets via 10-fold and leave-one-probe-out cross-validation techniques. Overall root-mean-square errors (RMSE) of 0.013 m <inline-formula><tex-math notation=LaTeX>$^{3}$</tex-math></inline-formula> m<inline-formula><tex-math notation=LaTeX>$^{-3}$</tex-math></inline-formula> volumetric SM and R-value of 0.95 [-] are obtained for 10-fold cross-validation. The proposed model reached an RMSE of 0.033 m <inline-formula><tex-math notation=LaTeX>$^{3}$</tex-math></inline-formula> m<inline-formula><tex-math notation=LaTeX>$^{-3}$</tex-math></inline-formula> and an R-value of 0.5 [-] in leave-one-probe-out cross-validation. While having limited data, the results indicate that high resolution SM measurement can be achieved with a low-cost GPS reflectometry system onboard a small UAS platform for use in precision agriculture (PA) applications." @default.
- W4290989080 created "2022-08-13" @default.
- W4290989080 creator A5034104279 @default.
- W4290989080 creator A5036752295 @default.
- W4290989080 creator A5063619966 @default.
- W4290989080 creator A5065532859 @default.
- W4290989080 creator A5075070489 @default.
- W4290989080 date "2022-01-01" @default.
- W4290989080 modified "2023-10-18" @default.
- W4290989080 title "Fusion of Reflected GPS Signals With Multispectral Imagery to Estimate Soil Moisture at Subfield Scale From Small UAS Platforms" @default.
- W4290989080 cites W1923563908 @default.
- W4290989080 cites W1966854945 @default.
- W4290989080 cites W1978835122 @default.
- W4290989080 cites W1989700757 @default.
- W4290989080 cites W1993443125 @default.
- W4290989080 cites W2020030234 @default.
- W4290989080 cites W2022907598 @default.
- W4290989080 cites W2039348932 @default.
- W4290989080 cites W2047199896 @default.
- W4290989080 cites W2049501131 @default.
- W4290989080 cites W2054422328 @default.
- W4290989080 cites W2055114513 @default.
- W4290989080 cites W2058232479 @default.
- W4290989080 cites W2061227954 @default.
- W4290989080 cites W2063422594 @default.
- W4290989080 cites W2066536164 @default.
- W4290989080 cites W2075604132 @default.
- W4290989080 cites W2096171073 @default.
- W4290989080 cites W2096453255 @default.
- W4290989080 cites W2125513050 @default.
- W4290989080 cites W2145488820 @default.
- W4290989080 cites W2166105691 @default.
- W4290989080 cites W2167731682 @default.
- W4290989080 cites W2308425384 @default.
- W4290989080 cites W2328923540 @default.
- W4290989080 cites W2348428089 @default.
- W4290989080 cites W248389711 @default.
- W4290989080 cites W2491477437 @default.
- W4290989080 cites W2516883896 @default.
- W4290989080 cites W2754404803 @default.
- W4290989080 cites W2768153469 @default.
- W4290989080 cites W2768292166 @default.
- W4290989080 cites W2787190595 @default.
- W4290989080 cites W2802220396 @default.
- W4290989080 cites W2802435130 @default.
- W4290989080 cites W2904758662 @default.
- W4290989080 cites W2912094294 @default.
- W4290989080 cites W2943184968 @default.
- W4290989080 cites W2969037938 @default.
- W4290989080 cites W2978354175 @default.
- W4290989080 cites W2997303888 @default.
- W4290989080 cites W3000652771 @default.
- W4290989080 cites W3015987273 @default.
- W4290989080 cites W3037068793 @default.
- W4290989080 cites W3066417939 @default.
- W4290989080 cites W3095275538 @default.
- W4290989080 cites W3110388612 @default.
- W4290989080 cites W3111808594 @default.
- W4290989080 cites W3131626864 @default.
- W4290989080 cites W3133517324 @default.
- W4290989080 doi "https://doi.org/10.1109/jstars.2022.3197794" @default.
- W4290989080 hasPublicationYear "2022" @default.
- W4290989080 type Work @default.
- W4290989080 citedByCount "3" @default.
- W4290989080 countsByYear W42909890802023 @default.
- W4290989080 crossrefType "journal-article" @default.
- W4290989080 hasAuthorship W4290989080A5034104279 @default.
- W4290989080 hasAuthorship W4290989080A5036752295 @default.
- W4290989080 hasAuthorship W4290989080A5063619966 @default.
- W4290989080 hasAuthorship W4290989080A5065532859 @default.
- W4290989080 hasAuthorship W4290989080A5075070489 @default.
- W4290989080 hasBestOaLocation W42909890801 @default.
- W4290989080 hasConcept C105795698 @default.
- W4290989080 hasConcept C127313418 @default.
- W4290989080 hasConcept C139945424 @default.
- W4290989080 hasConcept C142724271 @default.
- W4290989080 hasConcept C154945302 @default.
- W4290989080 hasConcept C173163844 @default.
- W4290989080 hasConcept C205372480 @default.
- W4290989080 hasConcept C2776133958 @default.
- W4290989080 hasConcept C33923547 @default.
- W4290989080 hasConcept C33954974 @default.
- W4290989080 hasConcept C39432304 @default.
- W4290989080 hasConcept C41008148 @default.
- W4290989080 hasConcept C60229501 @default.
- W4290989080 hasConcept C62649853 @default.
- W4290989080 hasConcept C71924100 @default.
- W4290989080 hasConcept C76155785 @default.
- W4290989080 hasConceptScore W4290989080C105795698 @default.
- W4290989080 hasConceptScore W4290989080C127313418 @default.
- W4290989080 hasConceptScore W4290989080C139945424 @default.
- W4290989080 hasConceptScore W4290989080C142724271 @default.
- W4290989080 hasConceptScore W4290989080C154945302 @default.
- W4290989080 hasConceptScore W4290989080C173163844 @default.
- W4290989080 hasConceptScore W4290989080C205372480 @default.
- W4290989080 hasConceptScore W4290989080C2776133958 @default.
- W4290989080 hasConceptScore W4290989080C33923547 @default.
- W4290989080 hasConceptScore W4290989080C33954974 @default.