Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290996816> ?p ?o ?g. }
- W4290996816 abstract "Several types of RNA in the cell are usually involved in biological processes with multiple functions. Coding RNAs code for proteins while non-coding RNAs regulate gene expression. Some single-strand RNAs can create a circular shape via the back splicing process and convert into a new type called circular RNA (circRNA). circRNAs are among the essential non-coding RNAs in the cell that involve multiple disorders. One of the critical functions of circRNAs is to regulate the expression of other genes through sponging micro RNAs (miRNAs) in diseases. This mechanism, known as the competing endogenous RNA (ceRNA) hypothesis, and additional information obtained from biological datasets can be used by computational approaches to predict novel associations between disease and circRNAs.We applied multiple classifiers to validate the extracted features from the heterogeneous network and selected the most appropriate one based on some evaluation criteria. Then, the XGBoost is utilized in our pipeline to generate a novel approach, called CircWalk, to predict CircRNA-Disease associations. Our results demonstrate that CircWalk has reasonable accuracy and AUC compared with other state-of-the-art algorithms. We also use CircWalk to predict novel circRNAs associated with lung, gastric, and colorectal cancers as a case study. The results show that our approach can accurately detect novel circRNAs related to these diseases.Considering the ceRNA hypothesis, we integrate multiple resources to construct a heterogeneous network from circRNAs, mRNAs, miRNAs, and diseases. Next, the DeepWalk algorithm is applied to the network to extract feature vectors for circRNAs and diseases. The extracted features are used to learn a classifier and generate a model to predict novel CircRNA-Disease associations. Our approach uses the concept of the ceRNA hypothesis and the miRNA sponge effect of circRNAs to predict their associations with diseases. Our results show that this outlook could help identify CircRNA-Disease associations more accurately." @default.
- W4290996816 created "2022-08-13" @default.
- W4290996816 creator A5007661886 @default.
- W4290996816 creator A5038200411 @default.
- W4290996816 creator A5049372676 @default.
- W4290996816 creator A5063512925 @default.
- W4290996816 date "2022-08-11" @default.
- W4290996816 modified "2023-10-09" @default.
- W4290996816 title "CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning" @default.
- W4290996816 cites W1032731786 @default.
- W4290996816 cites W2008056655 @default.
- W4290996816 cites W2046387002 @default.
- W4290996816 cites W2058835062 @default.
- W4290996816 cites W2076491552 @default.
- W4290996816 cites W2114850508 @default.
- W4290996816 cites W2115662330 @default.
- W4290996816 cites W2128049108 @default.
- W4290996816 cites W2128768066 @default.
- W4290996816 cites W2147806662 @default.
- W4290996816 cites W2153234291 @default.
- W4290996816 cites W2158135353 @default.
- W4290996816 cites W2174734928 @default.
- W4290996816 cites W2346480860 @default.
- W4290996816 cites W2471934747 @default.
- W4290996816 cites W2537679995 @default.
- W4290996816 cites W2557283063 @default.
- W4290996816 cites W2567465856 @default.
- W4290996816 cites W2764294957 @default.
- W4290996816 cites W2765950793 @default.
- W4290996816 cites W2795917193 @default.
- W4290996816 cites W2805285958 @default.
- W4290996816 cites W2807602500 @default.
- W4290996816 cites W2828141792 @default.
- W4290996816 cites W2884943532 @default.
- W4290996816 cites W2885229294 @default.
- W4290996816 cites W2897721185 @default.
- W4290996816 cites W2909184366 @default.
- W4290996816 cites W2951739649 @default.
- W4290996816 cites W2953577247 @default.
- W4290996816 cites W2966844369 @default.
- W4290996816 cites W2967043226 @default.
- W4290996816 cites W2974612830 @default.
- W4290996816 cites W2993326585 @default.
- W4290996816 cites W3014630136 @default.
- W4290996816 cites W3014858999 @default.
- W4290996816 cites W3020614442 @default.
- W4290996816 cites W3026308742 @default.
- W4290996816 cites W3034046925 @default.
- W4290996816 cites W3036529033 @default.
- W4290996816 cites W3082893695 @default.
- W4290996816 cites W3087380499 @default.
- W4290996816 cites W3093194543 @default.
- W4290996816 cites W3102476541 @default.
- W4290996816 cites W3103443653 @default.
- W4290996816 cites W3104097132 @default.
- W4290996816 cites W3117084002 @default.
- W4290996816 cites W3131511718 @default.
- W4290996816 cites W3135290444 @default.
- W4290996816 cites W3135605501 @default.
- W4290996816 cites W3154103441 @default.
- W4290996816 cites W3154681489 @default.
- W4290996816 cites W3156228806 @default.
- W4290996816 cites W3156522003 @default.
- W4290996816 cites W3157592001 @default.
- W4290996816 cites W3162005642 @default.
- W4290996816 cites W3162189954 @default.
- W4290996816 cites W3163767727 @default.
- W4290996816 cites W4200110750 @default.
- W4290996816 cites W4244895750 @default.
- W4290996816 cites W4246271082 @default.
- W4290996816 cites W4255156463 @default.
- W4290996816 cites W2977393556 @default.
- W4290996816 cites W3163247020 @default.
- W4290996816 doi "https://doi.org/10.1186/s12859-022-04883-9" @default.
- W4290996816 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35953785" @default.
- W4290996816 hasPublicationYear "2022" @default.
- W4290996816 type Work @default.
- W4290996816 citedByCount "1" @default.
- W4290996816 countsByYear W42909968162022 @default.
- W4290996816 crossrefType "journal-article" @default.
- W4290996816 hasAuthorship W4290996816A5007661886 @default.
- W4290996816 hasAuthorship W4290996816A5038200411 @default.
- W4290996816 hasAuthorship W4290996816A5049372676 @default.
- W4290996816 hasAuthorship W4290996816A5063512925 @default.
- W4290996816 hasBestOaLocation W42909968161 @default.
- W4290996816 hasConcept C104317684 @default.
- W4290996816 hasConcept C145059251 @default.
- W4290996816 hasConcept C150194340 @default.
- W4290996816 hasConcept C194993378 @default.
- W4290996816 hasConcept C2775893923 @default.
- W4290996816 hasConcept C41008148 @default.
- W4290996816 hasConcept C54355233 @default.
- W4290996816 hasConcept C54458228 @default.
- W4290996816 hasConcept C60365752 @default.
- W4290996816 hasConcept C62203573 @default.
- W4290996816 hasConcept C67705224 @default.
- W4290996816 hasConcept C70721500 @default.
- W4290996816 hasConcept C86803240 @default.
- W4290996816 hasConcept C95371953 @default.
- W4290996816 hasConceptScore W4290996816C104317684 @default.