Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290996832> ?p ?o ?g. }
- W4290996832 endingPage "1197" @default.
- W4290996832 startingPage "1197" @default.
- W4290996832 abstract "The chlorophyll fluorescence parameter Fv/Fm (maximum photosynthetic efficiency of optical system II) is an intrinsic index for exploring plant photosynthesis. Hyperspectral remote sensing technology can be used for rapid nondestructive detection of chlorophyll fluorescence parameters. Existing studies show that there is a good correlation between the vegetation index and Fv/Fm. However, due to the limited hyperspectral information reflected by the vegetation index, the established model often cannot reach the ideal accuracy. Therefore, this study took rice as the research object and explored the internal relationship between chlorophyll fluorescence parameters and spectral reflectance by setting different fertilization treatments. Spectral sensitive information was extracted by vegetation index and continuous wavelet transform (CWT) to explore a more suitable method for Fv/Fm hyperspectral estimation at the rice leaf scale. Then a monitoring model of Fv/Fm in rice leaves was established by the back propagation neural network (BPNN) algorithm. The results showed that: (1) the accuracy of univariate models constructed by Fv/Fm inversion based on 10 commonly used vegetation indices constructed by traditional methods was low; (2) The correlation between leaf hyperspectral reflectance and Fv/Fm could be effectively improved by using CWT, and the accuracy of the univariate model constructed by using the best wavelet coefficients could reach the level of rough evaluation of Fv/Fm; (3) The effect of wavelet transform using different mother wavelet functions as the basis function was different, and bior3.3 function was the best; R2, RMSE and RPD of the BPNN model constructed by using the first 10 best wavelet coefficients decomposed by the bior3.3 was 0.823 6, 0.013 2 and 2.304 3. In conclusion, this study proves that CWT can effectively extract sensitive bands of rice leaves for Fv/Fm monitoring, providing a reference for the follow-up rapid and nondestructive monitoring of chlorophyll fluorescence." @default.
- W4290996832 created "2022-08-13" @default.
- W4290996832 creator A5012626960 @default.
- W4290996832 creator A5018476596 @default.
- W4290996832 creator A5020850394 @default.
- W4290996832 creator A5023755254 @default.
- W4290996832 creator A5037102607 @default.
- W4290996832 creator A5042325439 @default.
- W4290996832 creator A5075351744 @default.
- W4290996832 creator A5075859322 @default.
- W4290996832 creator A5083421867 @default.
- W4290996832 date "2022-08-11" @default.
- W4290996832 modified "2023-10-02" @default.
- W4290996832 title "Continuous Wavelet Transform and Back Propagation Neural Network for Condition Monitoring Chlorophyll Fluorescence Parameters Fv/Fm of Rice Leaves" @default.
- W4290996832 cites W1972804462 @default.
- W4290996832 cites W1979977153 @default.
- W4290996832 cites W1989844834 @default.
- W4290996832 cites W1994138453 @default.
- W4290996832 cites W1995269805 @default.
- W4290996832 cites W2005125849 @default.
- W4290996832 cites W2009409575 @default.
- W4290996832 cites W2012298800 @default.
- W4290996832 cites W2012686349 @default.
- W4290996832 cites W2030233869 @default.
- W4290996832 cites W2031718820 @default.
- W4290996832 cites W2036003376 @default.
- W4290996832 cites W2038161366 @default.
- W4290996832 cites W2068427983 @default.
- W4290996832 cites W2071495852 @default.
- W4290996832 cites W2077439648 @default.
- W4290996832 cites W2083315185 @default.
- W4290996832 cites W2089441588 @default.
- W4290996832 cites W2094677081 @default.
- W4290996832 cites W2109006150 @default.
- W4290996832 cites W2121102297 @default.
- W4290996832 cites W2125721005 @default.
- W4290996832 cites W2128438912 @default.
- W4290996832 cites W2132527497 @default.
- W4290996832 cites W2137257757 @default.
- W4290996832 cites W2139925058 @default.
- W4290996832 cites W2147904324 @default.
- W4290996832 cites W2158755893 @default.
- W4290996832 cites W2159961845 @default.
- W4290996832 cites W2163410149 @default.
- W4290996832 cites W2283847619 @default.
- W4290996832 cites W2321443763 @default.
- W4290996832 cites W2461497717 @default.
- W4290996832 cites W2538537201 @default.
- W4290996832 cites W2569963742 @default.
- W4290996832 cites W2651834314 @default.
- W4290996832 cites W2740293245 @default.
- W4290996832 cites W2749337269 @default.
- W4290996832 cites W2938457698 @default.
- W4290996832 cites W2971881262 @default.
- W4290996832 cites W2978344933 @default.
- W4290996832 cites W2990409388 @default.
- W4290996832 cites W2997150204 @default.
- W4290996832 cites W3040589805 @default.
- W4290996832 cites W3081857359 @default.
- W4290996832 cites W3112240129 @default.
- W4290996832 cites W3116713273 @default.
- W4290996832 cites W3149181082 @default.
- W4290996832 cites W3160998080 @default.
- W4290996832 cites W3171675991 @default.
- W4290996832 doi "https://doi.org/10.3390/agriculture12081197" @default.
- W4290996832 hasPublicationYear "2022" @default.
- W4290996832 type Work @default.
- W4290996832 citedByCount "6" @default.
- W4290996832 countsByYear W42909968322022 @default.
- W4290996832 countsByYear W42909968322023 @default.
- W4290996832 crossrefType "journal-article" @default.
- W4290996832 hasAuthorship W4290996832A5012626960 @default.
- W4290996832 hasAuthorship W4290996832A5018476596 @default.
- W4290996832 hasAuthorship W4290996832A5020850394 @default.
- W4290996832 hasAuthorship W4290996832A5023755254 @default.
- W4290996832 hasAuthorship W4290996832A5037102607 @default.
- W4290996832 hasAuthorship W4290996832A5042325439 @default.
- W4290996832 hasAuthorship W4290996832A5075351744 @default.
- W4290996832 hasAuthorship W4290996832A5075859322 @default.
- W4290996832 hasAuthorship W4290996832A5083421867 @default.
- W4290996832 hasBestOaLocation W42909968321 @default.
- W4290996832 hasConcept C105795698 @default.
- W4290996832 hasConcept C127313418 @default.
- W4290996832 hasConcept C139945424 @default.
- W4290996832 hasConcept C153180895 @default.
- W4290996832 hasConcept C154945302 @default.
- W4290996832 hasConcept C159078339 @default.
- W4290996832 hasConcept C161584116 @default.
- W4290996832 hasConcept C186060115 @default.
- W4290996832 hasConcept C196216189 @default.
- W4290996832 hasConcept C199163554 @default.
- W4290996832 hasConcept C33923547 @default.
- W4290996832 hasConcept C39432304 @default.
- W4290996832 hasConcept C41008148 @default.
- W4290996832 hasConcept C47432892 @default.
- W4290996832 hasConcept C62649853 @default.
- W4290996832 hasConcept C86803240 @default.
- W4290996832 hasConceptScore W4290996832C105795698 @default.