Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290996849> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4290996849 abstract "This paper considers a signal detection problem for uplink transmission in Internet-of-Things (IoT) networks. Due to the non-idealities of IoT devices such as amplifier’s non-linearity, the exact end-to-end channel model as well as the accurate channel state information (CSI) is not available at the receiver (i.e., base station), which precludes the possibility of using classical model-based signal detection methods. Deep learning (DL) techniques have been recognized recently as an effective tool to deal with this challenge. However, for IoT scenarios, devices typically transmit data using short packets with few pilot symbols. The amount of training data is insufficient to train a detector for each device individually. In order to combat the data scarcity barrier and enable few-shot learning, this paper proposes to aggregate pilot symbols from different devices in an intelligent manner to train a universal signal detector which is applicable to all possible channel conditions. To be specific, a knowledge-driven signal detector architecture is devised following the modular design methodology for classical communication system receivers. Under this framework, three neural networks (NN), termed as channel feature extractor, signal feature extractor, and signal classifier, respectively, are employed to form decision statistics and make estimates on the transmitted symbols. Furthermore, borrowing the ideas in domain adaptation, a novel component termed as link discriminator is integrated into the architecture to improve the generalization capability of the detector. Simulation results demonstrate that the proposed knowledge-driven detector outperforms the existing solutions in the sense that it enjoys higher detection accuracy and can be well trained with less training data." @default.
- W4290996849 created "2022-08-13" @default.
- W4290996849 creator A5000597313 @default.
- W4290996849 creator A5052821016 @default.
- W4290996849 date "2022-05-16" @default.
- W4290996849 modified "2023-09-25" @default.
- W4290996849 title "Signal Detection for IoT Networks with Unknown Channel Models: A Knowledge-Driven Approach" @default.
- W4290996849 cites W2102483328 @default.
- W4290996849 cites W2157903917 @default.
- W4290996849 cites W2786361328 @default.
- W4290996849 cites W2892081127 @default.
- W4290996849 cites W2921669466 @default.
- W4290996849 cites W2985259405 @default.
- W4290996849 cites W3110675837 @default.
- W4290996849 cites W3111000293 @default.
- W4290996849 doi "https://doi.org/10.1109/icc45855.2022.9839029" @default.
- W4290996849 hasPublicationYear "2022" @default.
- W4290996849 type Work @default.
- W4290996849 citedByCount "1" @default.
- W4290996849 countsByYear W42909968492023 @default.
- W4290996849 crossrefType "proceedings-article" @default.
- W4290996849 hasAuthorship W4290996849A5000597313 @default.
- W4290996849 hasAuthorship W4290996849A5052821016 @default.
- W4290996849 hasConcept C127162648 @default.
- W4290996849 hasConcept C154945302 @default.
- W4290996849 hasConcept C158379750 @default.
- W4290996849 hasConcept C31258907 @default.
- W4290996849 hasConcept C41008148 @default.
- W4290996849 hasConcept C76155785 @default.
- W4290996849 hasConcept C79403827 @default.
- W4290996849 hasConcept C94915269 @default.
- W4290996849 hasConceptScore W4290996849C127162648 @default.
- W4290996849 hasConceptScore W4290996849C154945302 @default.
- W4290996849 hasConceptScore W4290996849C158379750 @default.
- W4290996849 hasConceptScore W4290996849C31258907 @default.
- W4290996849 hasConceptScore W4290996849C41008148 @default.
- W4290996849 hasConceptScore W4290996849C76155785 @default.
- W4290996849 hasConceptScore W4290996849C79403827 @default.
- W4290996849 hasConceptScore W4290996849C94915269 @default.
- W4290996849 hasFunder F4320321001 @default.
- W4290996849 hasLocation W42909968491 @default.
- W4290996849 hasOpenAccess W4290996849 @default.
- W4290996849 hasPrimaryLocation W42909968491 @default.
- W4290996849 hasRelatedWork W1541869227 @default.
- W4290996849 hasRelatedWork W1814871225 @default.
- W4290996849 hasRelatedWork W1972070263 @default.
- W4290996849 hasRelatedWork W2040517002 @default.
- W4290996849 hasRelatedWork W2091999583 @default.
- W4290996849 hasRelatedWork W2349859930 @default.
- W4290996849 hasRelatedWork W2363207358 @default.
- W4290996849 hasRelatedWork W2383500874 @default.
- W4290996849 hasRelatedWork W2389505258 @default.
- W4290996849 hasRelatedWork W2583359890 @default.
- W4290996849 isParatext "false" @default.
- W4290996849 isRetracted "false" @default.
- W4290996849 workType "article" @default.