Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290996890> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4290996890 abstract "This Agriculture is the main source of livelihood in India. Major destruction occurs in the field of agriculture is due to the diseases in plants. Disease causes heavy devastation in the field of farming. An automatic system needs to be developed for the prevention of crops at initial stages from diseases. The automatic system will diagnose plant disease and identify its category. The paper proposed an automatic disease detection system which recognize the category of the diseases and healthiness in plants. The classification of diseases have done on the basis of symptoms appeared on the leaf surface. The paper broadly categorises the diseases into three categories such as fungal, bacterial and viral. The deep learning approach namely Convolutional Neural Network is used for the classification of the diseases. The dataset consists of 64963 number of samples in which training has performed on 80% of the samples of dataset and validation has performed on 20% of the samples of dataset. The simulation results shows that the convolutional neural network that have been trained on given dataset acquired an accuracy of 99.12%." @default.
- W4290996890 created "2022-08-13" @default.
- W4290996890 creator A5007800990 @default.
- W4290996890 creator A5028638112 @default.
- W4290996890 creator A5037233397 @default.
- W4290996890 date "2022-05-20" @default.
- W4290996890 modified "2023-10-18" @default.
- W4290996890 title "Plant Disease Classification Using Deep Learning Framework" @default.
- W4290996890 cites W1597793043 @default.
- W4290996890 cites W1992307845 @default.
- W4290996890 cites W2473156356 @default.
- W4290996890 cites W2602159426 @default.
- W4290996890 cites W2904583950 @default.
- W4290996890 cites W2945461009 @default.
- W4290996890 cites W2995498583 @default.
- W4290996890 cites W3013965312 @default.
- W4290996890 cites W3082513575 @default.
- W4290996890 cites W3090232526 @default.
- W4290996890 cites W3111432325 @default.
- W4290996890 cites W3134827261 @default.
- W4290996890 cites W3162088729 @default.
- W4290996890 cites W4213101707 @default.
- W4290996890 cites W4220799638 @default.
- W4290996890 doi "https://doi.org/10.1109/cises54857.2022.9844352" @default.
- W4290996890 hasPublicationYear "2022" @default.
- W4290996890 type Work @default.
- W4290996890 citedByCount "1" @default.
- W4290996890 countsByYear W42909968902023 @default.
- W4290996890 crossrefType "proceedings-article" @default.
- W4290996890 hasAuthorship W4290996890A5007800990 @default.
- W4290996890 hasAuthorship W4290996890A5028638112 @default.
- W4290996890 hasAuthorship W4290996890A5037233397 @default.
- W4290996890 hasConcept C108583219 @default.
- W4290996890 hasConcept C118518473 @default.
- W4290996890 hasConcept C119857082 @default.
- W4290996890 hasConcept C142724271 @default.
- W4290996890 hasConcept C150903083 @default.
- W4290996890 hasConcept C154945302 @default.
- W4290996890 hasConcept C18903297 @default.
- W4290996890 hasConcept C202444582 @default.
- W4290996890 hasConcept C2779134260 @default.
- W4290996890 hasConcept C3019235130 @default.
- W4290996890 hasConcept C33923547 @default.
- W4290996890 hasConcept C3987366 @default.
- W4290996890 hasConcept C41008148 @default.
- W4290996890 hasConcept C50644808 @default.
- W4290996890 hasConcept C71924100 @default.
- W4290996890 hasConcept C81363708 @default.
- W4290996890 hasConcept C86803240 @default.
- W4290996890 hasConcept C9652623 @default.
- W4290996890 hasConceptScore W4290996890C108583219 @default.
- W4290996890 hasConceptScore W4290996890C118518473 @default.
- W4290996890 hasConceptScore W4290996890C119857082 @default.
- W4290996890 hasConceptScore W4290996890C142724271 @default.
- W4290996890 hasConceptScore W4290996890C150903083 @default.
- W4290996890 hasConceptScore W4290996890C154945302 @default.
- W4290996890 hasConceptScore W4290996890C18903297 @default.
- W4290996890 hasConceptScore W4290996890C202444582 @default.
- W4290996890 hasConceptScore W4290996890C2779134260 @default.
- W4290996890 hasConceptScore W4290996890C3019235130 @default.
- W4290996890 hasConceptScore W4290996890C33923547 @default.
- W4290996890 hasConceptScore W4290996890C3987366 @default.
- W4290996890 hasConceptScore W4290996890C41008148 @default.
- W4290996890 hasConceptScore W4290996890C50644808 @default.
- W4290996890 hasConceptScore W4290996890C71924100 @default.
- W4290996890 hasConceptScore W4290996890C81363708 @default.
- W4290996890 hasConceptScore W4290996890C86803240 @default.
- W4290996890 hasConceptScore W4290996890C9652623 @default.
- W4290996890 hasLocation W42909968901 @default.
- W4290996890 hasOpenAccess W4290996890 @default.
- W4290996890 hasPrimaryLocation W42909968901 @default.
- W4290996890 hasRelatedWork W2337926734 @default.
- W4290996890 hasRelatedWork W2470368200 @default.
- W4290996890 hasRelatedWork W2799614062 @default.
- W4290996890 hasRelatedWork W2963958939 @default.
- W4290996890 hasRelatedWork W3158527823 @default.
- W4290996890 hasRelatedWork W4311257506 @default.
- W4290996890 hasRelatedWork W4312831135 @default.
- W4290996890 hasRelatedWork W4319994054 @default.
- W4290996890 hasRelatedWork W4320802194 @default.
- W4290996890 hasRelatedWork W4327499916 @default.
- W4290996890 isParatext "false" @default.
- W4290996890 isRetracted "false" @default.
- W4290996890 workType "article" @default.