Matches in SemOpenAlex for { <https://semopenalex.org/work/W4290996912> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4290996912 abstract "Domain Generation Algorithms (DGAs) are widely applied in diversified malicious attack patterns such as botnets. Attacks utilize DGAs to dynamically create pseudorandom domains to evade security detection and successfully connect bots with Command and Controls (C&C) servers. The detection of Algorithmically Generated Domains (AGDs) plays an essential role in network attack detection. Most of the existing DGA detectors are machine learning or deep learning-based methods. However, these DGA detectors perform relatively poorly with insufficient training samples, such as small-scale DGA families and emerging DGA variants. Besides, machine learning-based detectors require sophisticated and time-consuming artificial feature extraction, and attackers can circumvent the extracted features. This paper focuses on accurately detecting DGAs based on siamese network with insufficient training samples. Our proposed DGA detection method is referred to as DGAD-SN. DGAD-SN first introduces contrastive learning and adopts the siamese network framework to construct the feature extractor, which excavates the implicit relationship information between characters in the domain name strings using limited training samples. Then machine learning-based DGA classifiers are trained based on the extracted neural feature vectors of domain names to identify AGDs. Our experimental studies suggest that DGAD-SN can efficiently extract distinguishable neural feature vectors for domain names and outperforms state-of-the-art DGA detectors in identifying small-scale DGA families or emerging DGA variants. Its average accuracy is 10%−15% higher than conventional machine learning-based detection methods and about 1%−2% higher than deep learning-based detection methods using limited training samples." @default.
- W4290996912 created "2022-08-13" @default.
- W4290996912 creator A5014390459 @default.
- W4290996912 creator A5032328549 @default.
- W4290996912 creator A5032379172 @default.
- W4290996912 creator A5034787225 @default.
- W4290996912 creator A5043707940 @default.
- W4290996912 creator A5073150709 @default.
- W4290996912 date "2022-05-16" @default.
- W4290996912 modified "2023-10-01" @default.
- W4290996912 title "Towards Accurate DGA Detection based on Siamese Network with Insufficient Training Samples" @default.
- W4290996912 cites W17316494 @default.
- W4290996912 cites W2138621090 @default.
- W4290996912 cites W2171590421 @default.
- W4290996912 cites W22566950 @default.
- W4290996912 cites W2768793959 @default.
- W4290996912 cites W2786906486 @default.
- W4290996912 cites W3001230617 @default.
- W4290996912 cites W3035571898 @default.
- W4290996912 cites W3036666454 @default.
- W4290996912 cites W3036942035 @default.
- W4290996912 cites W3089392154 @default.
- W4290996912 cites W3094843939 @default.
- W4290996912 cites W3096655658 @default.
- W4290996912 cites W3104899859 @default.
- W4290996912 cites W3171007011 @default.
- W4290996912 doi "https://doi.org/10.1109/icc45855.2022.9838409" @default.
- W4290996912 hasPublicationYear "2022" @default.
- W4290996912 type Work @default.
- W4290996912 citedByCount "0" @default.
- W4290996912 crossrefType "proceedings-article" @default.
- W4290996912 hasAuthorship W4290996912A5014390459 @default.
- W4290996912 hasAuthorship W4290996912A5032328549 @default.
- W4290996912 hasAuthorship W4290996912A5032379172 @default.
- W4290996912 hasAuthorship W4290996912A5034787225 @default.
- W4290996912 hasAuthorship W4290996912A5043707940 @default.
- W4290996912 hasAuthorship W4290996912A5073150709 @default.
- W4290996912 hasConcept C108583219 @default.
- W4290996912 hasConcept C110875604 @default.
- W4290996912 hasConcept C117978034 @default.
- W4290996912 hasConcept C119857082 @default.
- W4290996912 hasConcept C127413603 @default.
- W4290996912 hasConcept C134306372 @default.
- W4290996912 hasConcept C136764020 @default.
- W4290996912 hasConcept C138885662 @default.
- W4290996912 hasConcept C153180895 @default.
- W4290996912 hasConcept C154945302 @default.
- W4290996912 hasConcept C21880701 @default.
- W4290996912 hasConcept C22735295 @default.
- W4290996912 hasConcept C2776401178 @default.
- W4290996912 hasConcept C33923547 @default.
- W4290996912 hasConcept C36503486 @default.
- W4290996912 hasConcept C41008148 @default.
- W4290996912 hasConcept C41895202 @default.
- W4290996912 hasConcept C50644808 @default.
- W4290996912 hasConcept C52622490 @default.
- W4290996912 hasConcept C93996380 @default.
- W4290996912 hasConceptScore W4290996912C108583219 @default.
- W4290996912 hasConceptScore W4290996912C110875604 @default.
- W4290996912 hasConceptScore W4290996912C117978034 @default.
- W4290996912 hasConceptScore W4290996912C119857082 @default.
- W4290996912 hasConceptScore W4290996912C127413603 @default.
- W4290996912 hasConceptScore W4290996912C134306372 @default.
- W4290996912 hasConceptScore W4290996912C136764020 @default.
- W4290996912 hasConceptScore W4290996912C138885662 @default.
- W4290996912 hasConceptScore W4290996912C153180895 @default.
- W4290996912 hasConceptScore W4290996912C154945302 @default.
- W4290996912 hasConceptScore W4290996912C21880701 @default.
- W4290996912 hasConceptScore W4290996912C22735295 @default.
- W4290996912 hasConceptScore W4290996912C2776401178 @default.
- W4290996912 hasConceptScore W4290996912C33923547 @default.
- W4290996912 hasConceptScore W4290996912C36503486 @default.
- W4290996912 hasConceptScore W4290996912C41008148 @default.
- W4290996912 hasConceptScore W4290996912C41895202 @default.
- W4290996912 hasConceptScore W4290996912C50644808 @default.
- W4290996912 hasConceptScore W4290996912C52622490 @default.
- W4290996912 hasConceptScore W4290996912C93996380 @default.
- W4290996912 hasFunder F4320321001 @default.
- W4290996912 hasFunder F4320324856 @default.
- W4290996912 hasFunder F4320335777 @default.
- W4290996912 hasLocation W42909969121 @default.
- W4290996912 hasOpenAccess W4290996912 @default.
- W4290996912 hasPrimaryLocation W42909969121 @default.
- W4290996912 hasRelatedWork W2088610186 @default.
- W4290996912 hasRelatedWork W2733060750 @default.
- W4290996912 hasRelatedWork W2773120646 @default.
- W4290996912 hasRelatedWork W2942650110 @default.
- W4290996912 hasRelatedWork W2946016983 @default.
- W4290996912 hasRelatedWork W2994855682 @default.
- W4290996912 hasRelatedWork W2998066088 @default.
- W4290996912 hasRelatedWork W3098026853 @default.
- W4290996912 hasRelatedWork W4225070666 @default.
- W4290996912 hasRelatedWork W4226315055 @default.
- W4290996912 isParatext "false" @default.
- W4290996912 isRetracted "false" @default.
- W4290996912 workType "article" @default.