Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291000168> ?p ?o ?g. }
- W4291000168 endingPage "17" @default.
- W4291000168 startingPage "1" @default.
- W4291000168 abstract "Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on generative adversarial network data augmentation and model fusion are proposed to address these problems. First, the arrhythmia sparse data is augmented by generative adversarial networks. Then, aiming at the identification of different types of arrhythmias in long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM are proposed. The model effectively fuses the location information of the nearest neighbors through the local feature extraction part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attention mechanism is introduced to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database. The experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by 99.4%, and the algorithm has high recognition performance and clinical value." @default.
- W4291000168 created "2022-08-13" @default.
- W4291000168 creator A5002179397 @default.
- W4291000168 creator A5017296972 @default.
- W4291000168 creator A5023876899 @default.
- W4291000168 creator A5062869999 @default.
- W4291000168 date "2022-08-11" @default.
- W4291000168 modified "2023-10-15" @default.
- W4291000168 title "Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms" @default.
- W4291000168 cites W2022917724 @default.
- W4291000168 cites W2039562695 @default.
- W4291000168 cites W2081856525 @default.
- W4291000168 cites W2127854713 @default.
- W4291000168 cites W2132904166 @default.
- W4291000168 cites W2146254945 @default.
- W4291000168 cites W2168284722 @default.
- W4291000168 cites W2172107473 @default.
- W4291000168 cites W2277019862 @default.
- W4291000168 cites W2482102801 @default.
- W4291000168 cites W2612184698 @default.
- W4291000168 cites W2622380070 @default.
- W4291000168 cites W2748902594 @default.
- W4291000168 cites W2781924583 @default.
- W4291000168 cites W2793113509 @default.
- W4291000168 cites W2795340004 @default.
- W4291000168 cites W2807586294 @default.
- W4291000168 cites W2886034601 @default.
- W4291000168 cites W2943118732 @default.
- W4291000168 cites W2943272385 @default.
- W4291000168 cites W2948032685 @default.
- W4291000168 cites W2986609444 @default.
- W4291000168 cites W2990848657 @default.
- W4291000168 cites W2995758361 @default.
- W4291000168 cites W3002882006 @default.
- W4291000168 cites W3002941625 @default.
- W4291000168 cites W3007969083 @default.
- W4291000168 cites W3011035318 @default.
- W4291000168 cites W3013198476 @default.
- W4291000168 cites W3022945091 @default.
- W4291000168 cites W3024801014 @default.
- W4291000168 cites W3026019966 @default.
- W4291000168 cites W3037655156 @default.
- W4291000168 cites W3039775522 @default.
- W4291000168 cites W3082326062 @default.
- W4291000168 cites W3088471486 @default.
- W4291000168 cites W3091659788 @default.
- W4291000168 cites W3092707779 @default.
- W4291000168 cites W3118412160 @default.
- W4291000168 cites W3118824169 @default.
- W4291000168 cites W3129056955 @default.
- W4291000168 cites W3136292312 @default.
- W4291000168 cites W3139112705 @default.
- W4291000168 cites W3186353389 @default.
- W4291000168 cites W3193696940 @default.
- W4291000168 cites W3199994371 @default.
- W4291000168 cites W4205148514 @default.
- W4291000168 cites W4229008968 @default.
- W4291000168 cites W855272188 @default.
- W4291000168 doi "https://doi.org/10.1155/2022/1577778" @default.
- W4291000168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35990162" @default.
- W4291000168 hasPublicationYear "2022" @default.
- W4291000168 type Work @default.
- W4291000168 citedByCount "9" @default.
- W4291000168 countsByYear W42910001682023 @default.
- W4291000168 crossrefType "journal-article" @default.
- W4291000168 hasAuthorship W4291000168A5002179397 @default.
- W4291000168 hasAuthorship W4291000168A5017296972 @default.
- W4291000168 hasAuthorship W4291000168A5023876899 @default.
- W4291000168 hasAuthorship W4291000168A5062869999 @default.
- W4291000168 hasBestOaLocation W42910001681 @default.
- W4291000168 hasConcept C108583219 @default.
- W4291000168 hasConcept C116834253 @default.
- W4291000168 hasConcept C119857082 @default.
- W4291000168 hasConcept C124101348 @default.
- W4291000168 hasConcept C138885662 @default.
- W4291000168 hasConcept C153180895 @default.
- W4291000168 hasConcept C154945302 @default.
- W4291000168 hasConcept C164705383 @default.
- W4291000168 hasConcept C2776401178 @default.
- W4291000168 hasConcept C2779161974 @default.
- W4291000168 hasConcept C2988455589 @default.
- W4291000168 hasConcept C41008148 @default.
- W4291000168 hasConcept C41895202 @default.
- W4291000168 hasConcept C52622490 @default.
- W4291000168 hasConcept C59404180 @default.
- W4291000168 hasConcept C59822182 @default.
- W4291000168 hasConcept C71924100 @default.
- W4291000168 hasConcept C86803240 @default.
- W4291000168 hasConceptScore W4291000168C108583219 @default.
- W4291000168 hasConceptScore W4291000168C116834253 @default.
- W4291000168 hasConceptScore W4291000168C119857082 @default.
- W4291000168 hasConceptScore W4291000168C124101348 @default.
- W4291000168 hasConceptScore W4291000168C138885662 @default.
- W4291000168 hasConceptScore W4291000168C153180895 @default.
- W4291000168 hasConceptScore W4291000168C154945302 @default.
- W4291000168 hasConceptScore W4291000168C164705383 @default.
- W4291000168 hasConceptScore W4291000168C2776401178 @default.
- W4291000168 hasConceptScore W4291000168C2779161974 @default.