Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291001097> ?p ?o ?g. }
- W4291001097 endingPage "8047" @default.
- W4291001097 startingPage "8047" @default.
- W4291001097 abstract "With rapid economic and demographic growth, traffic conditions in medium and large cities are becoming extremely congested. Numerous metropolitan management organizations hope to promote the coordination of traffic and urban development by formulating and improving traffic development strategies. The effectiveness of these solutions depends largely on an accurate assessment of the distribution of urban hotspots (centers of traffic activity). In recent years, many scholars have employed the K-Means clustering technique to identify urban hotspots, believing it to be efficient. K-means clustering is a sort of iterative clustering analysis. When the data dimensionality is large and the sample size is enormous, the K-Means clustering algorithm is sensitive to the initial clustering centers. To mitigate the problem, a hybrid heuristic “fuzzy system-particle swarm-genetic” algorithm, named FPSO-GAK, is employed to obtain better initial clustering centers for the K-Means clustering algorithm. The clustering results are evaluated and analyzed using three-cluster evaluation indexes (SC, SP and SSE) and two-cluster similarity indexes (CI and CSI). A taxi GPS dataset and a multi-source dataset were employed to test and validate the effectiveness of the proposed algorithm in comparison to the Random Swap clustering algorithm (RS), Genetic K-means algorithm (GAK), Particle Swarm Optimization (PSO) based K-Means, PSO based constraint K-Means, PSO based Weighted K-Means, PSO-GA based K-Means and K-Means++ algorithms. The comparison findings demonstrate that the proposed algorithm can achieve better clustering results, as well as successfully acquire urban hotspots." @default.
- W4291001097 created "2022-08-13" @default.
- W4291001097 creator A5011800995 @default.
- W4291001097 creator A5014443745 @default.
- W4291001097 creator A5080795359 @default.
- W4291001097 creator A5083510126 @default.
- W4291001097 creator A5084687253 @default.
- W4291001097 date "2022-08-11" @default.
- W4291001097 modified "2023-09-25" @default.
- W4291001097 title "A Novel K-Means Clustering Method for Locating Urban Hotspots Based on Hybrid Heuristic Initialization" @default.
- W4291001097 cites W1984779822 @default.
- W4291001097 cites W2021016322 @default.
- W4291001097 cites W2021101795 @default.
- W4291001097 cites W2041895610 @default.
- W4291001097 cites W2056811412 @default.
- W4291001097 cites W2064610124 @default.
- W4291001097 cites W2075364600 @default.
- W4291001097 cites W2078888611 @default.
- W4291001097 cites W2103868202 @default.
- W4291001097 cites W2120887445 @default.
- W4291001097 cites W2172041433 @default.
- W4291001097 cites W2183843206 @default.
- W4291001097 cites W2617125006 @default.
- W4291001097 cites W2706827357 @default.
- W4291001097 cites W2708165930 @default.
- W4291001097 cites W2739928734 @default.
- W4291001097 cites W2754987240 @default.
- W4291001097 cites W2758467382 @default.
- W4291001097 cites W2763126082 @default.
- W4291001097 cites W2774515497 @default.
- W4291001097 cites W2778155454 @default.
- W4291001097 cites W2783344919 @default.
- W4291001097 cites W2794764873 @default.
- W4291001097 cites W2807834884 @default.
- W4291001097 cites W2884586244 @default.
- W4291001097 cites W2890600481 @default.
- W4291001097 cites W2892336503 @default.
- W4291001097 cites W2896628661 @default.
- W4291001097 cites W2897708422 @default.
- W4291001097 cites W2905747833 @default.
- W4291001097 cites W2938771653 @default.
- W4291001097 cites W2939120428 @default.
- W4291001097 cites W2949488362 @default.
- W4291001097 cites W3003968822 @default.
- W4291001097 cites W3010383195 @default.
- W4291001097 cites W3014022945 @default.
- W4291001097 cites W3017949221 @default.
- W4291001097 cites W3047431048 @default.
- W4291001097 cites W3080473944 @default.
- W4291001097 cites W3118813884 @default.
- W4291001097 cites W3132645184 @default.
- W4291001097 cites W3183334199 @default.
- W4291001097 cites W3185832719 @default.
- W4291001097 cites W3215724944 @default.
- W4291001097 cites W4281614423 @default.
- W4291001097 cites W4281625216 @default.
- W4291001097 cites W4284694767 @default.
- W4291001097 cites W4285065294 @default.
- W4291001097 doi "https://doi.org/10.3390/app12168047" @default.
- W4291001097 hasPublicationYear "2022" @default.
- W4291001097 type Work @default.
- W4291001097 citedByCount "3" @default.
- W4291001097 countsByYear W42910010972022 @default.
- W4291001097 countsByYear W42910010972023 @default.
- W4291001097 crossrefType "journal-article" @default.
- W4291001097 hasAuthorship W4291001097A5011800995 @default.
- W4291001097 hasAuthorship W4291001097A5014443745 @default.
- W4291001097 hasAuthorship W4291001097A5080795359 @default.
- W4291001097 hasAuthorship W4291001097A5083510126 @default.
- W4291001097 hasAuthorship W4291001097A5084687253 @default.
- W4291001097 hasBestOaLocation W42910010971 @default.
- W4291001097 hasConcept C104047586 @default.
- W4291001097 hasConcept C11413529 @default.
- W4291001097 hasConcept C114466953 @default.
- W4291001097 hasConcept C124101348 @default.
- W4291001097 hasConcept C154945302 @default.
- W4291001097 hasConcept C17212007 @default.
- W4291001097 hasConcept C199360897 @default.
- W4291001097 hasConcept C33704608 @default.
- W4291001097 hasConcept C41008148 @default.
- W4291001097 hasConcept C73555534 @default.
- W4291001097 hasConcept C85617194 @default.
- W4291001097 hasConcept C94641424 @default.
- W4291001097 hasConceptScore W4291001097C104047586 @default.
- W4291001097 hasConceptScore W4291001097C11413529 @default.
- W4291001097 hasConceptScore W4291001097C114466953 @default.
- W4291001097 hasConceptScore W4291001097C124101348 @default.
- W4291001097 hasConceptScore W4291001097C154945302 @default.
- W4291001097 hasConceptScore W4291001097C17212007 @default.
- W4291001097 hasConceptScore W4291001097C199360897 @default.
- W4291001097 hasConceptScore W4291001097C33704608 @default.
- W4291001097 hasConceptScore W4291001097C41008148 @default.
- W4291001097 hasConceptScore W4291001097C73555534 @default.
- W4291001097 hasConceptScore W4291001097C85617194 @default.
- W4291001097 hasConceptScore W4291001097C94641424 @default.
- W4291001097 hasIssue "16" @default.
- W4291001097 hasLocation W42910010971 @default.
- W4291001097 hasOpenAccess W4291001097 @default.