Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291002014> ?p ?o ?g. }
- W4291002014 endingPage "220301" @default.
- W4291002014 startingPage "220301" @default.
- W4291002014 abstract "In the application of quantum communication networks, it is an important task to realize the optimal allocation of resources according to the current situation. For example, We need to select the optimal quantum key distribution (QKD) protocol and parameters. Traditionally, the most commonly implemented method is the local search algorithm (LSA), which costs a lot of resources. Here in this work, we propose a machine learning based scheme, in which the regression machine learning is used to simultaneously select the optimal protocol and corresponding parameters. In addition, we make comparisons among a few machine learning models including random forest (RF), K-nearest neighbor (KNN) and logistic regression. Simulation results show that the new scheme takes much less time than the LSA scheme, and the RF achieves the best performance. In addition, through the RF residual analysis, we find that the machine learning scheme has good robustness. In conclusion, this work may play an important role in promoting the practical application of quantum communication networks." @default.
- W4291002014 created "2022-08-13" @default.
- W4291002014 creator A5009458239 @default.
- W4291002014 creator A5057251397 @default.
- W4291002014 creator A5068768026 @default.
- W4291002014 creator A5070164923 @default.
- W4291002014 creator A5082810654 @default.
- W4291002014 date "2022-01-01" @default.
- W4291002014 modified "2023-10-14" @default.
- W4291002014 title "Application of machine learning in optimal allocation of quantum communication resources" @default.
- W4291002014 cites W1532752401 @default.
- W4291002014 cites W1677861335 @default.
- W4291002014 cites W1969211823 @default.
- W4291002014 cites W1984760921 @default.
- W4291002014 cites W1996891384 @default.
- W4291002014 cites W2013622559 @default.
- W4291002014 cites W2020272675 @default.
- W4291002014 cites W2029180195 @default.
- W4291002014 cites W2030119075 @default.
- W4291002014 cites W2047463679 @default.
- W4291002014 cites W2054518789 @default.
- W4291002014 cites W2055617162 @default.
- W4291002014 cites W2057469797 @default.
- W4291002014 cites W2070920112 @default.
- W4291002014 cites W2087526127 @default.
- W4291002014 cites W2122111042 @default.
- W4291002014 cites W2158993297 @default.
- W4291002014 cites W2273682834 @default.
- W4291002014 cites W2799278992 @default.
- W4291002014 cites W2803691034 @default.
- W4291002014 cites W2901429138 @default.
- W4291002014 cites W2903950532 @default.
- W4291002014 cites W2909890785 @default.
- W4291002014 cites W2911964244 @default.
- W4291002014 cites W2921048564 @default.
- W4291002014 cites W2949704604 @default.
- W4291002014 cites W2964448830 @default.
- W4291002014 cites W2998312988 @default.
- W4291002014 cites W3038349736 @default.
- W4291002014 cites W3098325229 @default.
- W4291002014 cites W3109024997 @default.
- W4291002014 cites W3127495780 @default.
- W4291002014 cites W3167713705 @default.
- W4291002014 cites W3196819144 @default.
- W4291002014 cites W4379508048 @default.
- W4291002014 doi "https://doi.org/10.7498/aps.71.20220871" @default.
- W4291002014 hasPublicationYear "2022" @default.
- W4291002014 type Work @default.
- W4291002014 citedByCount "2" @default.
- W4291002014 countsByYear W42910020142023 @default.
- W4291002014 crossrefType "journal-article" @default.
- W4291002014 hasAuthorship W4291002014A5009458239 @default.
- W4291002014 hasAuthorship W4291002014A5057251397 @default.
- W4291002014 hasAuthorship W4291002014A5068768026 @default.
- W4291002014 hasAuthorship W4291002014A5070164923 @default.
- W4291002014 hasAuthorship W4291002014A5082810654 @default.
- W4291002014 hasBestOaLocation W42910020141 @default.
- W4291002014 hasConcept C104317684 @default.
- W4291002014 hasConcept C105795698 @default.
- W4291002014 hasConcept C113238511 @default.
- W4291002014 hasConcept C11413529 @default.
- W4291002014 hasConcept C119857082 @default.
- W4291002014 hasConcept C134306372 @default.
- W4291002014 hasConcept C142724271 @default.
- W4291002014 hasConcept C154945302 @default.
- W4291002014 hasConcept C155512373 @default.
- W4291002014 hasConcept C169258074 @default.
- W4291002014 hasConcept C185592680 @default.
- W4291002014 hasConcept C204787440 @default.
- W4291002014 hasConcept C26517878 @default.
- W4291002014 hasConcept C2780385302 @default.
- W4291002014 hasConcept C33923547 @default.
- W4291002014 hasConcept C38652104 @default.
- W4291002014 hasConcept C41008148 @default.
- W4291002014 hasConcept C55493867 @default.
- W4291002014 hasConcept C63479239 @default.
- W4291002014 hasConcept C71924100 @default.
- W4291002014 hasConcept C77618280 @default.
- W4291002014 hasConcept C83546350 @default.
- W4291002014 hasConceptScore W4291002014C104317684 @default.
- W4291002014 hasConceptScore W4291002014C105795698 @default.
- W4291002014 hasConceptScore W4291002014C113238511 @default.
- W4291002014 hasConceptScore W4291002014C11413529 @default.
- W4291002014 hasConceptScore W4291002014C119857082 @default.
- W4291002014 hasConceptScore W4291002014C134306372 @default.
- W4291002014 hasConceptScore W4291002014C142724271 @default.
- W4291002014 hasConceptScore W4291002014C154945302 @default.
- W4291002014 hasConceptScore W4291002014C155512373 @default.
- W4291002014 hasConceptScore W4291002014C169258074 @default.
- W4291002014 hasConceptScore W4291002014C185592680 @default.
- W4291002014 hasConceptScore W4291002014C204787440 @default.
- W4291002014 hasConceptScore W4291002014C26517878 @default.
- W4291002014 hasConceptScore W4291002014C2780385302 @default.
- W4291002014 hasConceptScore W4291002014C33923547 @default.
- W4291002014 hasConceptScore W4291002014C38652104 @default.
- W4291002014 hasConceptScore W4291002014C41008148 @default.
- W4291002014 hasConceptScore W4291002014C55493867 @default.
- W4291002014 hasConceptScore W4291002014C63479239 @default.