Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291004843> ?p ?o ?g. }
- W4291004843 abstract "Abstract Streamflow prediction is a long‐standing hydrologic problem. Development of models for streamflow prediction often requires incorporation of catchment physical descriptors to characterize the associated complex hydrological processes. Across different scales of catchments, these physical descriptors also allow models to extrapolate hydrologic information from one catchment to others, a process referred to as “regionalization”. Recently, in gauged basin scenarios, deep learning models have been shown to achieve state of the art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical descriptors and weather forcing data. However, these physical descriptors are by their nature uncertain, sometimes incomplete, or even unavailable in certain cases, which limits the applicability of this approach. In this paper, we show that by assigning a vector of random values as a surrogate for catchment physical descriptors, we can achieve robust regionalization performance under a gauged prediction scenario. Our results show that the deep learning model using our proposed random vector approach achieves a predictive performance comparable to that of the model using actual physical descriptors. The random vector approach yields robust performance under different data sparsity scenarios and deep learning model selections. Furthermore, based on the use of random vectors, high‐dimensional characterization improves regionalization performance in gauged basin scenario when physical descriptors are uncertain, or insufficient." @default.
- W4291004843 created "2022-08-13" @default.
- W4291004843 creator A5001445783 @default.
- W4291004843 creator A5003264021 @default.
- W4291004843 creator A5016611537 @default.
- W4291004843 creator A5021165760 @default.
- W4291004843 creator A5040319974 @default.
- W4291004843 creator A5072210494 @default.
- W4291004843 creator A5074305244 @default.
- W4291004843 creator A5079087204 @default.
- W4291004843 creator A5083131557 @default.
- W4291004843 creator A5087130372 @default.
- W4291004843 creator A5088861881 @default.
- W4291004843 creator A5089436894 @default.
- W4291004843 date "2022-08-01" @default.
- W4291004843 modified "2023-10-14" @default.
- W4291004843 title "Regionalization in a Global Hydrologic Deep Learning Model: From Physical Descriptors to Random Vectors" @default.
- W4291004843 cites W2004609727 @default.
- W4291004843 cites W2017461955 @default.
- W4291004843 cites W2031292142 @default.
- W4291004843 cites W2037825302 @default.
- W4291004843 cites W2041579970 @default.
- W4291004843 cites W2048069199 @default.
- W4291004843 cites W2060975319 @default.
- W4291004843 cites W2064675550 @default.
- W4291004843 cites W2083760058 @default.
- W4291004843 cites W2101706954 @default.
- W4291004843 cites W2107878631 @default.
- W4291004843 cites W2122389133 @default.
- W4291004843 cites W2124738823 @default.
- W4291004843 cites W2126867085 @default.
- W4291004843 cites W2141895127 @default.
- W4291004843 cites W2149071528 @default.
- W4291004843 cites W2329967558 @default.
- W4291004843 cites W2338949170 @default.
- W4291004843 cites W2594717185 @default.
- W4291004843 cites W2603766970 @default.
- W4291004843 cites W2774939834 @default.
- W4291004843 cites W2800819102 @default.
- W4291004843 cites W2909782709 @default.
- W4291004843 cites W2911033037 @default.
- W4291004843 cites W2920908316 @default.
- W4291004843 cites W2945300350 @default.
- W4291004843 cites W2950995524 @default.
- W4291004843 cites W2979377703 @default.
- W4291004843 cites W2983385682 @default.
- W4291004843 cites W2989857225 @default.
- W4291004843 cites W2995149074 @default.
- W4291004843 cites W3021094251 @default.
- W4291004843 cites W3024702011 @default.
- W4291004843 cites W3094518900 @default.
- W4291004843 cites W3099909056 @default.
- W4291004843 cites W3140862400 @default.
- W4291004843 cites W3177078757 @default.
- W4291004843 cites W3202385743 @default.
- W4291004843 cites W4226277206 @default.
- W4291004843 cites W4236154693 @default.
- W4291004843 cites W4253191453 @default.
- W4291004843 doi "https://doi.org/10.1029/2021wr031794" @default.
- W4291004843 hasPublicationYear "2022" @default.
- W4291004843 type Work @default.
- W4291004843 citedByCount "3" @default.
- W4291004843 countsByYear W42910048432023 @default.
- W4291004843 crossrefType "journal-article" @default.
- W4291004843 hasAuthorship W4291004843A5001445783 @default.
- W4291004843 hasAuthorship W4291004843A5003264021 @default.
- W4291004843 hasAuthorship W4291004843A5016611537 @default.
- W4291004843 hasAuthorship W4291004843A5021165760 @default.
- W4291004843 hasAuthorship W4291004843A5040319974 @default.
- W4291004843 hasAuthorship W4291004843A5072210494 @default.
- W4291004843 hasAuthorship W4291004843A5074305244 @default.
- W4291004843 hasAuthorship W4291004843A5079087204 @default.
- W4291004843 hasAuthorship W4291004843A5083131557 @default.
- W4291004843 hasAuthorship W4291004843A5087130372 @default.
- W4291004843 hasAuthorship W4291004843A5088861881 @default.
- W4291004843 hasAuthorship W4291004843A5089436894 @default.
- W4291004843 hasBestOaLocation W42910048431 @default.
- W4291004843 hasConcept C108583219 @default.
- W4291004843 hasConcept C111919701 @default.
- W4291004843 hasConcept C119857082 @default.
- W4291004843 hasConcept C124101348 @default.
- W4291004843 hasConcept C126197015 @default.
- W4291004843 hasConcept C126645576 @default.
- W4291004843 hasConcept C127313418 @default.
- W4291004843 hasConcept C154945302 @default.
- W4291004843 hasConcept C169258074 @default.
- W4291004843 hasConcept C197115733 @default.
- W4291004843 hasConcept C205649164 @default.
- W4291004843 hasConcept C41008148 @default.
- W4291004843 hasConcept C49204034 @default.
- W4291004843 hasConcept C53739315 @default.
- W4291004843 hasConcept C58640448 @default.
- W4291004843 hasConcept C98045186 @default.
- W4291004843 hasConceptScore W4291004843C108583219 @default.
- W4291004843 hasConceptScore W4291004843C111919701 @default.
- W4291004843 hasConceptScore W4291004843C119857082 @default.
- W4291004843 hasConceptScore W4291004843C124101348 @default.
- W4291004843 hasConceptScore W4291004843C126197015 @default.
- W4291004843 hasConceptScore W4291004843C126645576 @default.
- W4291004843 hasConceptScore W4291004843C127313418 @default.