Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291007263> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4291007263 abstract "Abstract Predictions of photovoltaic (PV) energy supply, based on data statistics of weather and PV records, are required in short‐intra and day‐ahead planning of PV plant operations. Numerical weather prediction (NWP), based on physical consideration, can simulate the progress of local cloudiness, although their prognoses are usually delayed by a few hours and are not provided with the quality desired by PV operators. Differential polynomial neural network (D‐PNN) is an unconventional hybrid regression technique, based on a novel learning strategy and able to resolve some problems in modeling patterns in high‐dynamical and chaotic non‐deterministic systems. D‐PNN splits the general partial differential equation (PDE) of the k th order into a summation form of two‐variable PDEs of a predetermined low order. PDE derivatives are transformed and separated into the Laplace counterparts, from which the unknown node originals are restored using the inverse L‐operation. D‐PNN searches for the best 2‐input couples, inserting node by node into its changeable tree structure, to expand the modular sum model by usable PDE components. The PDE‐modularization enhances the D‐PNN capability in modeling high uncertainty in weather patterns in the ground‐layer atmosphere, analogous to NWP. The designed PV intra‐ and day‐ahead prediction schemes, using hourly increasing and fixed‐time prediction horizons, were compared with different computing approaches based on differential, probabilistic and statistical learning. Machine learning (ML) models calculate the output PV power in each single hour separately or in an all‐day processing series with trained input delay. The results are analyzed and interpreted for each day and prediction hour. The quantitative results for both prediction procedures are comparable, showing the average intraday 11.6% and all‐day 9.6% (or rather 12.3% respectively) inaccuracy with respect to the daily peak power. Training data samples with spatial overlap in the regional scope and ML initialized similarity intervals are related to the fixed‐day or hourly increased input–output delay. This approach can compensate for unpredictable midterm variances in local weather patterns (caused by terrain or convection anomalies) and possible errors in model initialization. PV power was converted to and restored from the clear sky index in the modeling input/output, which represents its relative values, disregarding the actual solar cycle time." @default.
- W4291007263 created "2022-08-13" @default.
- W4291007263 creator A5022710304 @default.
- W4291007263 date "2022-08-24" @default.
- W4291007263 modified "2023-09-26" @default.
- W4291007263 title "Photovoltaic power intra‐ and day‐ahead predictions with differential learning producing <scp>PDE</scp>‐modular models based on the node L‐transform derivatives" @default.
- W4291007263 cites W2188548788 @default.
- W4291007263 cites W2345122339 @default.
- W4291007263 cites W2347494083 @default.
- W4291007263 cites W2578684911 @default.
- W4291007263 cites W2751698537 @default.
- W4291007263 cites W2790609388 @default.
- W4291007263 cites W2791696131 @default.
- W4291007263 cites W2912623183 @default.
- W4291007263 cites W2945339622 @default.
- W4291007263 cites W2977155375 @default.
- W4291007263 cites W2998795361 @default.
- W4291007263 cites W3009377873 @default.
- W4291007263 cites W3034083865 @default.
- W4291007263 cites W3036677348 @default.
- W4291007263 cites W3108854659 @default.
- W4291007263 cites W3129734871 @default.
- W4291007263 cites W3200008329 @default.
- W4291007263 cites W4220726206 @default.
- W4291007263 cites W858921981 @default.
- W4291007263 doi "https://doi.org/10.1002/ep.13977" @default.
- W4291007263 hasPublicationYear "2022" @default.
- W4291007263 type Work @default.
- W4291007263 citedByCount "1" @default.
- W4291007263 countsByYear W42910072632022 @default.
- W4291007263 crossrefType "journal-article" @default.
- W4291007263 hasAuthorship W4291007263A5022710304 @default.
- W4291007263 hasConcept C101468663 @default.
- W4291007263 hasConcept C111919701 @default.
- W4291007263 hasConcept C11413529 @default.
- W4291007263 hasConcept C119599485 @default.
- W4291007263 hasConcept C126255220 @default.
- W4291007263 hasConcept C127413603 @default.
- W4291007263 hasConcept C154945302 @default.
- W4291007263 hasConcept C33923547 @default.
- W4291007263 hasConcept C41008148 @default.
- W4291007263 hasConcept C41291067 @default.
- W4291007263 hasConcept C50644808 @default.
- W4291007263 hasConcept C62611344 @default.
- W4291007263 hasConcept C66938386 @default.
- W4291007263 hasConceptScore W4291007263C101468663 @default.
- W4291007263 hasConceptScore W4291007263C111919701 @default.
- W4291007263 hasConceptScore W4291007263C11413529 @default.
- W4291007263 hasConceptScore W4291007263C119599485 @default.
- W4291007263 hasConceptScore W4291007263C126255220 @default.
- W4291007263 hasConceptScore W4291007263C127413603 @default.
- W4291007263 hasConceptScore W4291007263C154945302 @default.
- W4291007263 hasConceptScore W4291007263C33923547 @default.
- W4291007263 hasConceptScore W4291007263C41008148 @default.
- W4291007263 hasConceptScore W4291007263C41291067 @default.
- W4291007263 hasConceptScore W4291007263C50644808 @default.
- W4291007263 hasConceptScore W4291007263C62611344 @default.
- W4291007263 hasConceptScore W4291007263C66938386 @default.
- W4291007263 hasIssue "2" @default.
- W4291007263 hasLocation W42910072631 @default.
- W4291007263 hasOpenAccess W4291007263 @default.
- W4291007263 hasPrimaryLocation W42910072631 @default.
- W4291007263 hasRelatedWork W14051135 @default.
- W4291007263 hasRelatedWork W1499732580 @default.
- W4291007263 hasRelatedWork W2143930673 @default.
- W4291007263 hasRelatedWork W2248824424 @default.
- W4291007263 hasRelatedWork W2386387936 @default.
- W4291007263 hasRelatedWork W2392110728 @default.
- W4291007263 hasRelatedWork W2888805005 @default.
- W4291007263 hasRelatedWork W2912275207 @default.
- W4291007263 hasRelatedWork W3041008096 @default.
- W4291007263 hasRelatedWork W4238335261 @default.
- W4291007263 hasVolume "42" @default.
- W4291007263 isParatext "false" @default.
- W4291007263 isRetracted "false" @default.
- W4291007263 workType "article" @default.