Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291008068> ?p ?o ?g. }
- W4291008068 endingPage "e0270493" @default.
- W4291008068 startingPage "e0270493" @default.
- W4291008068 abstract "Anterior segment optical coherence tomography (AS-OCT) is a non-contact, rapid, and high-resolution in vivo modality for imaging of the eyeball's anterior segment structures. Because progressive anterior segment deformation is a hallmark of certain eye diseases such as angle-closure glaucoma, identification of AS-OCT structural changes over time is fundamental to their diagnosis and monitoring. Detection of pathologic damage, however, relies on the ability to differentiate it from normal, age-related structural changes.This proposed large-scale, retrospective cross-sectional study will determine whether demographic characteristics including age can be predicted from deep learning analysis of AS-OCT images; it will also assess the importance of specific anterior segment areas of the eyeball to the prediction. We plan to extract, from SUPREME®, a clinical data warehouse (CDW) of Seoul National University Hospital (SNUH; Seoul, South Korea), a list of patients (at least 2,000) who underwent AS-OCT imaging between 2008 and 2020. AS-OCT images as well as demographic characteristics including age, gender, height, weight and body mass index (BMI) will be collected from electronic medical records (EMRs). The dataset of horizontal AS-OCT images will be split into training (80%), validation (10%), and test (10%) datasets, and a Vision Transformer (ViT) model will be built to predict demographics. Gradient-weighted Class Activation Mapping (Grad-CAM) will be used to visualize the regions of AS-OCT images that contributed to the model's decisions. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) will be applied to evaluate the model performance.This paper presents a study protocol for prediction of demographic characteristics from AS-OCT images of the eyeball using a deep learning model. The results of this study will aid clinicians in understanding and identifying age-related structural changes and other demographics-based structural differences.Registration ID with open science framework: 10.17605/OSF.IO/FQ46X." @default.
- W4291008068 created "2022-08-13" @default.
- W4291008068 creator A5002605667 @default.
- W4291008068 creator A5007126293 @default.
- W4291008068 creator A5013223600 @default.
- W4291008068 date "2022-08-11" @default.
- W4291008068 modified "2023-10-14" @default.
- W4291008068 title "Predicting demographic characteristics from anterior segment OCT images with deep learning: A study protocol" @default.
- W4291008068 cites W1028433899 @default.
- W4291008068 cites W1977623353 @default.
- W4291008068 cites W1979637962 @default.
- W4291008068 cites W1989658706 @default.
- W4291008068 cites W1991731930 @default.
- W4291008068 cites W1999321032 @default.
- W4291008068 cites W2005619780 @default.
- W4291008068 cites W2026316653 @default.
- W4291008068 cites W2046657533 @default.
- W4291008068 cites W2047934308 @default.
- W4291008068 cites W2051808053 @default.
- W4291008068 cites W2059662238 @default.
- W4291008068 cites W2069894748 @default.
- W4291008068 cites W2101155894 @default.
- W4291008068 cites W2122864218 @default.
- W4291008068 cites W2129164031 @default.
- W4291008068 cites W2131305862 @default.
- W4291008068 cites W217075555 @default.
- W4291008068 cites W2293295816 @default.
- W4291008068 cites W2315353896 @default.
- W4291008068 cites W2329669015 @default.
- W4291008068 cites W2460861293 @default.
- W4291008068 cites W2468856370 @default.
- W4291008068 cites W2557738935 @default.
- W4291008068 cites W2563911203 @default.
- W4291008068 cites W2610332124 @default.
- W4291008068 cites W2640386719 @default.
- W4291008068 cites W2752747624 @default.
- W4291008068 cites W2767404384 @default.
- W4291008068 cites W2772059204 @default.
- W4291008068 cites W2772246530 @default.
- W4291008068 cites W2886801379 @default.
- W4291008068 cites W2896056014 @default.
- W4291008068 cites W2919115771 @default.
- W4291008068 cites W3004868960 @default.
- W4291008068 cites W3094035662 @default.
- W4291008068 cites W3124963373 @default.
- W4291008068 cites W3152552104 @default.
- W4291008068 cites W3158943024 @default.
- W4291008068 cites W3162055744 @default.
- W4291008068 cites W3210510019 @default.
- W4291008068 doi "https://doi.org/10.1371/journal.pone.0270493" @default.
- W4291008068 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35951641" @default.
- W4291008068 hasPublicationYear "2022" @default.
- W4291008068 type Work @default.
- W4291008068 citedByCount "1" @default.
- W4291008068 crossrefType "journal-article" @default.
- W4291008068 hasAuthorship W4291008068A5002605667 @default.
- W4291008068 hasAuthorship W4291008068A5007126293 @default.
- W4291008068 hasAuthorship W4291008068A5013223600 @default.
- W4291008068 hasBestOaLocation W42910080681 @default.
- W4291008068 hasConcept C108583219 @default.
- W4291008068 hasConcept C118487528 @default.
- W4291008068 hasConcept C126322002 @default.
- W4291008068 hasConcept C144024400 @default.
- W4291008068 hasConcept C149923435 @default.
- W4291008068 hasConcept C154945302 @default.
- W4291008068 hasConcept C2778527774 @default.
- W4291008068 hasConcept C2778818243 @default.
- W4291008068 hasConcept C2780084366 @default.
- W4291008068 hasConcept C41008148 @default.
- W4291008068 hasConcept C58471807 @default.
- W4291008068 hasConcept C71924100 @default.
- W4291008068 hasConceptScore W4291008068C108583219 @default.
- W4291008068 hasConceptScore W4291008068C118487528 @default.
- W4291008068 hasConceptScore W4291008068C126322002 @default.
- W4291008068 hasConceptScore W4291008068C144024400 @default.
- W4291008068 hasConceptScore W4291008068C149923435 @default.
- W4291008068 hasConceptScore W4291008068C154945302 @default.
- W4291008068 hasConceptScore W4291008068C2778527774 @default.
- W4291008068 hasConceptScore W4291008068C2778818243 @default.
- W4291008068 hasConceptScore W4291008068C2780084366 @default.
- W4291008068 hasConceptScore W4291008068C41008148 @default.
- W4291008068 hasConceptScore W4291008068C58471807 @default.
- W4291008068 hasConceptScore W4291008068C71924100 @default.
- W4291008068 hasIssue "8" @default.
- W4291008068 hasLocation W42910080681 @default.
- W4291008068 hasLocation W42910080682 @default.
- W4291008068 hasLocation W42910080683 @default.
- W4291008068 hasOpenAccess W4291008068 @default.
- W4291008068 hasPrimaryLocation W42910080681 @default.
- W4291008068 hasRelatedWork W1523673188 @default.
- W4291008068 hasRelatedWork W2022231013 @default.
- W4291008068 hasRelatedWork W2048400038 @default.
- W4291008068 hasRelatedWork W2078288269 @default.
- W4291008068 hasRelatedWork W2086126450 @default.
- W4291008068 hasRelatedWork W2104704101 @default.
- W4291008068 hasRelatedWork W2535961556 @default.
- W4291008068 hasRelatedWork W2799338069 @default.
- W4291008068 hasRelatedWork W3113938851 @default.