Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291010293> ?p ?o ?g. }
- W4291010293 abstract "Abstract Dynamical models in the form of systems of ordinary differential equations have become a standard tool in systems biology. Many parameters of such models are usually unknown and have to be inferred from experimental data. Gradient-based optimization has proven to be effective for parameter estimation. However, computing gradients becomes increasingly costly for larger models, which are required for capturing the complex interactions of multiple biochemical pathways. Adjoint sensitivity analysis has been pivotal for working with such large models, but methods tailored for steady-state data are currently not available. We propose a new adjoint method for computing gradients, which is applicable if the experimental data include steady-state measurements. The method is based on a reformulation of the backward integration problem to a system of linear algebraic equations. The evaluation of the proposed method using real-world problems shows a speedup of total simulation time by a factor of up to 4.4. Our results demonstrate that the proposed approach can achieve a substantial improvement in computation time, in particular for large-scale models, where computational efficiency is critical. Author summary Large-scale dynamical models are nowadays widely used for the analysis of complex processes and the integration of large-scale data sets. However, computational cost is often a bottleneck. Here, we propose a new gradient computation method that facilitates the parameterization of large-scale models based on steady-state measurements. The method can be combined with existing gradient computation methods for time-course measurements. Accordingly, it is an essential contribution to the environment of computationally efficient approaches for the study of large-scale screening and omics data, but not tailored to biological applications, and, therefore, also useful beyond the field of computational biology." @default.
- W4291010293 created "2022-08-13" @default.
- W4291010293 creator A5001044691 @default.
- W4291010293 creator A5003197068 @default.
- W4291010293 creator A5011716508 @default.
- W4291010293 creator A5013534678 @default.
- W4291010293 creator A5014811978 @default.
- W4291010293 creator A5029598458 @default.
- W4291010293 creator A5038659090 @default.
- W4291010293 creator A5048103149 @default.
- W4291010293 creator A5063254041 @default.
- W4291010293 date "2022-08-11" @default.
- W4291010293 modified "2023-09-26" @default.
- W4291010293 title "Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks" @default.
- W4291010293 cites W1579014599 @default.
- W4291010293 cites W1964844730 @default.
- W4291010293 cites W1974411859 @default.
- W4291010293 cites W1989263028 @default.
- W4291010293 cites W2011618311 @default.
- W4291010293 cites W2024969564 @default.
- W4291010293 cites W2045164356 @default.
- W4291010293 cites W2102434872 @default.
- W4291010293 cites W2107073512 @default.
- W4291010293 cites W2123783513 @default.
- W4291010293 cites W2125916088 @default.
- W4291010293 cites W2143894094 @default.
- W4291010293 cites W2166751342 @default.
- W4291010293 cites W2270994990 @default.
- W4291010293 cites W2389037713 @default.
- W4291010293 cites W2512206536 @default.
- W4291010293 cites W2902000707 @default.
- W4291010293 cites W2950665010 @default.
- W4291010293 cites W2952056515 @default.
- W4291010293 cites W2952167528 @default.
- W4291010293 cites W2964392985 @default.
- W4291010293 cites W2997148015 @default.
- W4291010293 cites W3011448036 @default.
- W4291010293 cites W3014365047 @default.
- W4291010293 cites W3024659207 @default.
- W4291010293 cites W3105895642 @default.
- W4291010293 cites W3112804643 @default.
- W4291010293 cites W3125399711 @default.
- W4291010293 cites W3134951790 @default.
- W4291010293 cites W3142344196 @default.
- W4291010293 cites W3164109950 @default.
- W4291010293 cites W3204234525 @default.
- W4291010293 cites W400678491 @default.
- W4291010293 cites W4225648581 @default.
- W4291010293 cites W4280552812 @default.
- W4291010293 cites W4283383602 @default.
- W4291010293 cites W4283700072 @default.
- W4291010293 cites W4285088295 @default.
- W4291010293 doi "https://doi.org/10.1101/2022.08.08.503176" @default.
- W4291010293 hasPublicationYear "2022" @default.
- W4291010293 type Work @default.
- W4291010293 citedByCount "0" @default.
- W4291010293 crossrefType "posted-content" @default.
- W4291010293 hasAuthorship W4291010293A5001044691 @default.
- W4291010293 hasAuthorship W4291010293A5003197068 @default.
- W4291010293 hasAuthorship W4291010293A5011716508 @default.
- W4291010293 hasAuthorship W4291010293A5013534678 @default.
- W4291010293 hasAuthorship W4291010293A5014811978 @default.
- W4291010293 hasAuthorship W4291010293A5029598458 @default.
- W4291010293 hasAuthorship W4291010293A5038659090 @default.
- W4291010293 hasAuthorship W4291010293A5048103149 @default.
- W4291010293 hasAuthorship W4291010293A5063254041 @default.
- W4291010293 hasBestOaLocation W42910102931 @default.
- W4291010293 hasConcept C11413529 @default.
- W4291010293 hasConcept C121332964 @default.
- W4291010293 hasConcept C126255220 @default.
- W4291010293 hasConcept C127413603 @default.
- W4291010293 hasConcept C134306372 @default.
- W4291010293 hasConcept C147789679 @default.
- W4291010293 hasConcept C149635348 @default.
- W4291010293 hasConcept C165551260 @default.
- W4291010293 hasConcept C173608175 @default.
- W4291010293 hasConcept C185592680 @default.
- W4291010293 hasConcept C21200559 @default.
- W4291010293 hasConcept C24326235 @default.
- W4291010293 hasConcept C2778755073 @default.
- W4291010293 hasConcept C2780513914 @default.
- W4291010293 hasConcept C28826006 @default.
- W4291010293 hasConcept C33923547 @default.
- W4291010293 hasConcept C34862557 @default.
- W4291010293 hasConcept C41008148 @default.
- W4291010293 hasConcept C45374587 @default.
- W4291010293 hasConcept C51544822 @default.
- W4291010293 hasConcept C62520636 @default.
- W4291010293 hasConcept C68339613 @default.
- W4291010293 hasConcept C78045399 @default.
- W4291010293 hasConcept C8171440 @default.
- W4291010293 hasConceptScore W4291010293C11413529 @default.
- W4291010293 hasConceptScore W4291010293C121332964 @default.
- W4291010293 hasConceptScore W4291010293C126255220 @default.
- W4291010293 hasConceptScore W4291010293C127413603 @default.
- W4291010293 hasConceptScore W4291010293C134306372 @default.
- W4291010293 hasConceptScore W4291010293C147789679 @default.
- W4291010293 hasConceptScore W4291010293C149635348 @default.
- W4291010293 hasConceptScore W4291010293C165551260 @default.
- W4291010293 hasConceptScore W4291010293C173608175 @default.