Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291021486> ?p ?o ?g. }
- W4291021486 abstract "Abstract Background Improving the prediction ability of a human-machine interface (HMI) is critical to accomplish a bio-inspired or model-based control strategy for rehabilitation interventions, which are of increased interest to assist limb function post neurological injuries. A fundamental role of the HMI is to accurately predict human intent by mapping signals from a mechanical sensor or surface electromyography (sEMG) sensor. These sensors are limited to measuring the resulting limb force or movement or the neural signal evoking the force. As the intermediate mapping in the HMI also depends on muscle contractility, a motivation exists to include architectural features of the muscle as surrogates of dynamic muscle movement, thus further improving the HMI’s prediction accuracy. Objective The purpose of this study is to investigate a non-invasive sEMG and ultrasound (US) imaging-driven Hill-type neuromuscular model (HNM) for net ankle joint plantarflexion moment prediction. We hypothesize that the fusion of signals from sEMG and US imaging results in a more accurate net plantarflexion moment prediction than sole sEMG or US imaging. Methods Ten young non-disabled participants walked on a treadmill at speeds of 0.50, 0.75, 1.00, 1.25, and 1.50 m/s. The proposed HNM consists of two muscle-tendon units. The muscle activation for each unit was calculated as a weighted summation of the normalized sEMG signal and normalized muscle thickness signal from US imaging. The HNM calibration was performed under both single-speed mode and inter-speed mode, and then the calibrated HNM was validated across all walking speeds. Results On average, the normalized moment prediction root mean square error was reduced by 14.58 % ( $$p=0.012$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.012</mml:mn> </mml:mrow> </mml:math> ) and 36.79 % ( $$p<0.001$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo><</mml:mo> <mml:mn>0.001</mml:mn> </mml:mrow> </mml:math> ) with the proposed HNM when compared to sEMG-driven and US imaging-driven HNMs, respectively. Also, the calibrated models with data from the inter-speed mode were more robust than those from single-speed modes for the moment prediction. Conclusions The proposed sEMG-US imaging-driven HNM can significantly improve the net plantarflexion moment prediction accuracy across multiple walking speeds. The findings imply that the proposed HNM can be potentially used in bio-inspired control strategies for rehabilitative devices due to its superior prediction." @default.
- W4291021486 created "2022-08-13" @default.
- W4291021486 creator A5014750720 @default.
- W4291021486 creator A5022259086 @default.
- W4291021486 creator A5035401684 @default.
- W4291021486 creator A5082987673 @default.
- W4291021486 date "2022-08-09" @default.
- W4291021486 modified "2023-10-15" @default.
- W4291021486 title "Fused ultrasound and electromyography-driven neuromuscular model to improve plantarflexion moment prediction across walking speeds" @default.
- W4291021486 cites W1480865411 @default.
- W4291021486 cites W1549114171 @default.
- W4291021486 cites W1969563952 @default.
- W4291021486 cites W1990680221 @default.
- W4291021486 cites W2002991661 @default.
- W4291021486 cites W2008276678 @default.
- W4291021486 cites W2011820668 @default.
- W4291021486 cites W2013487834 @default.
- W4291021486 cites W2026612021 @default.
- W4291021486 cites W2027903514 @default.
- W4291021486 cites W2038925006 @default.
- W4291021486 cites W2046556840 @default.
- W4291021486 cites W2057637063 @default.
- W4291021486 cites W2064307963 @default.
- W4291021486 cites W2069203887 @default.
- W4291021486 cites W2087129291 @default.
- W4291021486 cites W2095548543 @default.
- W4291021486 cites W2101224818 @default.
- W4291021486 cites W2102159351 @default.
- W4291021486 cites W2104670628 @default.
- W4291021486 cites W2104816004 @default.
- W4291021486 cites W2105060942 @default.
- W4291021486 cites W2116099386 @default.
- W4291021486 cites W2117435472 @default.
- W4291021486 cites W2121039301 @default.
- W4291021486 cites W2124702357 @default.
- W4291021486 cites W2130281033 @default.
- W4291021486 cites W2131120326 @default.
- W4291021486 cites W2133060250 @default.
- W4291021486 cites W2133530044 @default.
- W4291021486 cites W2134659836 @default.
- W4291021486 cites W2157780858 @default.
- W4291021486 cites W2165323288 @default.
- W4291021486 cites W2169410184 @default.
- W4291021486 cites W2171786053 @default.
- W4291021486 cites W2220788145 @default.
- W4291021486 cites W2292296004 @default.
- W4291021486 cites W2343715419 @default.
- W4291021486 cites W2421101485 @default.
- W4291021486 cites W2467301443 @default.
- W4291021486 cites W2576893463 @default.
- W4291021486 cites W2587878592 @default.
- W4291021486 cites W2604501031 @default.
- W4291021486 cites W2808388357 @default.
- W4291021486 cites W2889703117 @default.
- W4291021486 cites W2909240409 @default.
- W4291021486 cites W2909532675 @default.
- W4291021486 cites W2942835517 @default.
- W4291021486 cites W2965786791 @default.
- W4291021486 cites W2971685831 @default.
- W4291021486 cites W2980956896 @default.
- W4291021486 cites W2987704671 @default.
- W4291021486 cites W3014493743 @default.
- W4291021486 cites W3048335448 @default.
- W4291021486 cites W3094537890 @default.
- W4291021486 cites W3098988622 @default.
- W4291021486 cites W3179229242 @default.
- W4291021486 cites W3195102198 @default.
- W4291021486 cites W3196338328 @default.
- W4291021486 cites W4200359217 @default.
- W4291021486 cites W4242380928 @default.
- W4291021486 doi "https://doi.org/10.1186/s12984-022-01061-z" @default.
- W4291021486 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35945600" @default.
- W4291021486 hasPublicationYear "2022" @default.
- W4291021486 type Work @default.
- W4291021486 citedByCount "3" @default.
- W4291021486 countsByYear W42910214862022 @default.
- W4291021486 countsByYear W42910214862023 @default.
- W4291021486 crossrefType "journal-article" @default.
- W4291021486 hasAuthorship W4291021486A5014750720 @default.
- W4291021486 hasAuthorship W4291021486A5022259086 @default.
- W4291021486 hasAuthorship W4291021486A5035401684 @default.
- W4291021486 hasAuthorship W4291021486A5082987673 @default.
- W4291021486 hasBestOaLocation W42910214861 @default.
- W4291021486 hasConcept C1862650 @default.
- W4291021486 hasConcept C2776874296 @default.
- W4291021486 hasConcept C2777515770 @default.
- W4291021486 hasConcept C2781464450 @default.
- W4291021486 hasConcept C41008148 @default.
- W4291021486 hasConcept C44154836 @default.
- W4291021486 hasConcept C71924100 @default.
- W4291021486 hasConcept C99508421 @default.
- W4291021486 hasConceptScore W4291021486C1862650 @default.
- W4291021486 hasConceptScore W4291021486C2776874296 @default.
- W4291021486 hasConceptScore W4291021486C2777515770 @default.
- W4291021486 hasConceptScore W4291021486C2781464450 @default.
- W4291021486 hasConceptScore W4291021486C41008148 @default.
- W4291021486 hasConceptScore W4291021486C44154836 @default.
- W4291021486 hasConceptScore W4291021486C71924100 @default.
- W4291021486 hasConceptScore W4291021486C99508421 @default.
- W4291021486 hasFunder F4320306076 @default.