Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291143793> ?p ?o ?g. }
- W4291143793 abstract "Compared to top-down coarse-grained (CG) models, bottom-up approaches are capable of offering higher structural fidelity. This fidelity results from the tight link to a higher-resolution reference, making the CG model chemically specific. Unfortunately, chemical specificity can be at odds with compound-screening strategies, which call for transferable parametrizations. Here we present an approach to reconcile bottom-up, structure-preserving CG models with chemical transferability. We consider the bottom-up CG parametrization of 3,441 C$_7$O$_2$ small-molecule isomers. Our approach combines atomic representations, unsupervised learning, and a large-scale extended-ensemble force-matching parametrization. We first identify a subset of 19 representative molecules, which maximally encode the local environment of all gas-phase conformers. Reference interactions between the 19 representative molecules were obtained from both homogeneous bulk liquids and various binary mixtures. An extended-ensemble parametrization over all 703 state points leads to a CG model that is both structure-based and chemically transferable. Remarkably, the resulting force field is on average more structurally accurate than single-state-point equivalents. Averaging over the extended ensemble acts as a mean-force regularizer, smoothing out both force and structural correlations that are overly specific to a single state point. Our approach aims at transferability through a set of CG bead types that can be used to easily construct new molecules, while retaining the benefits of a structure-based parametrization." @default.
- W4291143793 created "2022-08-13" @default.
- W4291143793 creator A5002664162 @default.
- W4291143793 creator A5005535171 @default.
- W4291143793 creator A5039428400 @default.
- W4291143793 date "2022-09-08" @default.
- W4291143793 modified "2023-09-30" @default.
- W4291143793 title "Broad chemical transferability in structure-based coarse-graining" @default.
- W4291143793 cites W1519815927 @default.
- W4291143793 cites W1898130445 @default.
- W4291143793 cites W1936090558 @default.
- W4291143793 cites W1965555277 @default.
- W4291143793 cites W1978215757 @default.
- W4291143793 cites W1978656738 @default.
- W4291143793 cites W1986356457 @default.
- W4291143793 cites W2000555491 @default.
- W4291143793 cites W2007400012 @default.
- W4291143793 cites W2009997795 @default.
- W4291143793 cites W2013164116 @default.
- W4291143793 cites W2026737855 @default.
- W4291143793 cites W2028263411 @default.
- W4291143793 cites W2038032348 @default.
- W4291143793 cites W2038617772 @default.
- W4291143793 cites W2039226949 @default.
- W4291143793 cites W2039685010 @default.
- W4291143793 cites W2042697460 @default.
- W4291143793 cites W2045885493 @default.
- W4291143793 cites W2046013193 @default.
- W4291143793 cites W2047796232 @default.
- W4291143793 cites W2057477511 @default.
- W4291143793 cites W2060174126 @default.
- W4291143793 cites W2060433756 @default.
- W4291143793 cites W2061308254 @default.
- W4291143793 cites W2066005503 @default.
- W4291143793 cites W2066373790 @default.
- W4291143793 cites W2107895552 @default.
- W4291143793 cites W2124177253 @default.
- W4291143793 cites W2137352412 @default.
- W4291143793 cites W2146950091 @default.
- W4291143793 cites W2168536864 @default.
- W4291143793 cites W2177317049 @default.
- W4291143793 cites W2206840988 @default.
- W4291143793 cites W2217853323 @default.
- W4291143793 cites W2320793464 @default.
- W4291143793 cites W2326778587 @default.
- W4291143793 cites W2332360555 @default.
- W4291143793 cites W2333430063 @default.
- W4291143793 cites W2338068099 @default.
- W4291143793 cites W2415436262 @default.
- W4291143793 cites W2487854154 @default.
- W4291143793 cites W2558395406 @default.
- W4291143793 cites W2601243251 @default.
- W4291143793 cites W2761743639 @default.
- W4291143793 cites W2771490327 @default.
- W4291143793 cites W2788686157 @default.
- W4291143793 cites W2788790301 @default.
- W4291143793 cites W2883583109 @default.
- W4291143793 cites W2889326414 @default.
- W4291143793 cites W2898545262 @default.
- W4291143793 cites W2904494205 @default.
- W4291143793 cites W2913814582 @default.
- W4291143793 cites W2928924740 @default.
- W4291143793 cites W2938589865 @default.
- W4291143793 cites W2943546850 @default.
- W4291143793 cites W2951797025 @default.
- W4291143793 cites W2963784900 @default.
- W4291143793 cites W2965352527 @default.
- W4291143793 cites W2994756887 @default.
- W4291143793 cites W2998476146 @default.
- W4291143793 cites W3013466124 @default.
- W4291143793 cites W3023159571 @default.
- W4291143793 cites W3036621083 @default.
- W4291143793 cites W3085090411 @default.
- W4291143793 cites W3086873014 @default.
- W4291143793 cites W3094428304 @default.
- W4291143793 cites W3097781375 @default.
- W4291143793 cites W3101811500 @default.
- W4291143793 cites W3105210220 @default.
- W4291143793 cites W3106733517 @default.
- W4291143793 cites W3108694932 @default.
- W4291143793 cites W3127603331 @default.
- W4291143793 cites W4291143793 @default.
- W4291143793 doi "https://doi.org/10.1063/5.0104914" @default.
- W4291143793 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36109216" @default.
- W4291143793 hasPublicationYear "2022" @default.
- W4291143793 type Work @default.
- W4291143793 citedByCount "5" @default.
- W4291143793 countsByYear W42911437932022 @default.
- W4291143793 countsByYear W42911437932023 @default.
- W4291143793 crossrefType "journal-article" @default.
- W4291143793 hasAuthorship W4291143793A5002664162 @default.
- W4291143793 hasAuthorship W4291143793A5005535171 @default.
- W4291143793 hasAuthorship W4291143793A5039428400 @default.
- W4291143793 hasBestOaLocation W42911437931 @default.
- W4291143793 hasConcept C10803110 @default.
- W4291143793 hasConcept C121332964 @default.
- W4291143793 hasConcept C121864883 @default.
- W4291143793 hasConcept C154945302 @default.
- W4291143793 hasConcept C185592680 @default.
- W4291143793 hasConcept C202887219 @default.