Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291184652> ?p ?o ?g. }
- W4291184652 abstract "Abstract Indeed, a proper understanding of materials is necessary to get the full benefit from them. For this purpose, multiscale computational modeling is the ultimate need. For machine learning analysis, data is collected from the literature. Machine learning analysis is performed using molecular descriptors as independent parameters and power conversion efficiency (PCE) as dependent property. Various machine learning models are tried. The support vector machine (SVM) model has outperformed others. New donor materials that are small molecules are designed using both well‐known and new building blocks. Their PCE is predicted using a SVM model. The top 10 small molecule donors are further studied using density functional theory calculations. Their electronic behavior is studied. Reorganization energy, exciton binding energy and transfer integral are also calculated. Finally, the best three small molecule donors are selected for molecular dynamics simulations. Molecular packing and mixing of active layer materials is studied using radial distribution function. Our proposed framework has the ability to design potential donor materials in short time with marginal computational cost." @default.
- W4291184652 created "2022-08-13" @default.
- W4291184652 creator A5008569774 @default.
- W4291184652 creator A5016296361 @default.
- W4291184652 creator A5022169492 @default.
- W4291184652 creator A5051602102 @default.
- W4291184652 date "2022-08-13" @default.
- W4291184652 modified "2023-10-16" @default.
- W4291184652 title "The use of machine learning, density functional theory, and molecular dynamics simulations for the designing and screening of efficient small molecule donors for organic solar cells" @default.
- W4291184652 cites W1851780793 @default.
- W4291184652 cites W1883095314 @default.
- W4291184652 cites W1979107772 @default.
- W4291184652 cites W2015115303 @default.
- W4291184652 cites W2049771607 @default.
- W4291184652 cites W2063910761 @default.
- W4291184652 cites W2065220178 @default.
- W4291184652 cites W2103354374 @default.
- W4291184652 cites W2332961806 @default.
- W4291184652 cites W2415157622 @default.
- W4291184652 cites W2765935634 @default.
- W4291184652 cites W2886669164 @default.
- W4291184652 cites W2891077258 @default.
- W4291184652 cites W2903449520 @default.
- W4291184652 cites W2908365170 @default.
- W4291184652 cites W2943696095 @default.
- W4291184652 cites W3009251320 @default.
- W4291184652 cites W3013761547 @default.
- W4291184652 cites W3015080212 @default.
- W4291184652 cites W3017043029 @default.
- W4291184652 cites W3032559110 @default.
- W4291184652 cites W3043770546 @default.
- W4291184652 cites W3080312283 @default.
- W4291184652 cites W3084941039 @default.
- W4291184652 cites W3098980479 @default.
- W4291184652 cites W3110377484 @default.
- W4291184652 cites W3113654743 @default.
- W4291184652 cites W3128276207 @default.
- W4291184652 cites W3130641362 @default.
- W4291184652 cites W3160380464 @default.
- W4291184652 cites W3162352498 @default.
- W4291184652 cites W3164024513 @default.
- W4291184652 cites W3173346126 @default.
- W4291184652 cites W3178747976 @default.
- W4291184652 cites W3182232775 @default.
- W4291184652 cites W3192571972 @default.
- W4291184652 cites W3192971571 @default.
- W4291184652 cites W3195068046 @default.
- W4291184652 cites W3198954826 @default.
- W4291184652 cites W3202774518 @default.
- W4291184652 cites W3204612348 @default.
- W4291184652 cites W3205368296 @default.
- W4291184652 cites W3212202340 @default.
- W4291184652 cites W3214480102 @default.
- W4291184652 cites W3215496857 @default.
- W4291184652 cites W3216682928 @default.
- W4291184652 cites W4205605524 @default.
- W4291184652 cites W4220964843 @default.
- W4291184652 cites W4221013427 @default.
- W4291184652 cites W4225140971 @default.
- W4291184652 cites W4281493096 @default.
- W4291184652 cites W4281693928 @default.
- W4291184652 cites W4283750860 @default.
- W4291184652 doi "https://doi.org/10.1002/qua.26998" @default.
- W4291184652 hasPublicationYear "2022" @default.
- W4291184652 type Work @default.
- W4291184652 citedByCount "7" @default.
- W4291184652 countsByYear W42911846522023 @default.
- W4291184652 crossrefType "journal-article" @default.
- W4291184652 hasAuthorship W4291184652A5008569774 @default.
- W4291184652 hasAuthorship W4291184652A5016296361 @default.
- W4291184652 hasAuthorship W4291184652A5022169492 @default.
- W4291184652 hasAuthorship W4291184652A5051602102 @default.
- W4291184652 hasConcept C119857082 @default.
- W4291184652 hasConcept C121332964 @default.
- W4291184652 hasConcept C121864883 @default.
- W4291184652 hasConcept C12267149 @default.
- W4291184652 hasConcept C14036430 @default.
- W4291184652 hasConcept C147597530 @default.
- W4291184652 hasConcept C152365726 @default.
- W4291184652 hasConcept C154945302 @default.
- W4291184652 hasConcept C159467904 @default.
- W4291184652 hasConcept C17729963 @default.
- W4291184652 hasConcept C178790620 @default.
- W4291184652 hasConcept C185592680 @default.
- W4291184652 hasConcept C186060115 @default.
- W4291184652 hasConcept C32909587 @default.
- W4291184652 hasConcept C41008148 @default.
- W4291184652 hasConcept C521977710 @default.
- W4291184652 hasConcept C59593255 @default.
- W4291184652 hasConcept C62520636 @default.
- W4291184652 hasConcept C78458016 @default.
- W4291184652 hasConcept C86803240 @default.
- W4291184652 hasConcept C91614233 @default.
- W4291184652 hasConceptScore W4291184652C119857082 @default.
- W4291184652 hasConceptScore W4291184652C121332964 @default.
- W4291184652 hasConceptScore W4291184652C121864883 @default.
- W4291184652 hasConceptScore W4291184652C12267149 @default.
- W4291184652 hasConceptScore W4291184652C14036430 @default.
- W4291184652 hasConceptScore W4291184652C147597530 @default.
- W4291184652 hasConceptScore W4291184652C152365726 @default.