Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291238211> ?p ?o ?g. }
- W4291238211 endingPage "100123" @default.
- W4291238211 startingPage "100123" @default.
- W4291238211 abstract "Understanding geological variance in a proved reservoir requires accurate as well as exact characterization of lithological facies. In the Kadanwari gas field, machine learning (ML) classification algorithms have been used to forecast facies on such an accessible dataset. The goal is to increase the reliability of facies categorization using a rigorous application of machine learning. In the current study to identify lithofacies, we have used the self-organizing map (SOM) and crossplot techniques. In the classification of the reservoir, recognition of lithofacies is the main piece of work. It is expensive to identify lithofacies with conventional methods from core data, and it is challenging to extend this application to non-cored wells. This research provides a less expensive method for the systematic and objective recognition of lithofacies through well-log data by Kohonen SOM. The SOMs are human-made neural networks that do not need surveillance and map the input space into groups in the structure as topology is arranged according to the input data changes. The results of SOM and crossplot indicates that the zone of interest is mainly composed of sandstone, shaly sandstone, shale with diminutive amount of carbonates. The cluster analysis approach has been utilized to categorize the reservoir rock groups in the Cretaceous reservoir for the Kadanwari gas field by analyzing the variance of reservoir properties data that are forecast by examining well log dimensions. Four groups of reservoirs were concluded, each of which was internally identical in petrophysical properties but distinct from the others. The reservoir mainly composed of sandstone is graded as excellent reservoir, while shale is graded as poor reservoir." @default.
- W4291238211 created "2022-08-13" @default.
- W4291238211 creator A5005583322 @default.
- W4291238211 creator A5005627824 @default.
- W4291238211 creator A5008784741 @default.
- W4291238211 creator A5010610294 @default.
- W4291238211 creator A5027205370 @default.
- W4291238211 creator A5028272884 @default.
- W4291238211 creator A5036952576 @default.
- W4291238211 creator A5045498018 @default.
- W4291238211 creator A5055913216 @default.
- W4291238211 creator A5086771933 @default.
- W4291238211 date "2023-02-01" @default.
- W4291238211 modified "2023-09-25" @default.
- W4291238211 title "Classification of reservoir quality using unsupervised machine learning and cluster analysis: Example from Kadanwari gas field, SE Pakistan" @default.
- W4291238211 cites W1675967931 @default.
- W4291238211 cites W1908441022 @default.
- W4291238211 cites W1984256356 @default.
- W4291238211 cites W1993252592 @default.
- W4291238211 cites W2072820120 @default.
- W4291238211 cites W2084274514 @default.
- W4291238211 cites W2104167064 @default.
- W4291238211 cites W2549577393 @default.
- W4291238211 cites W2589226272 @default.
- W4291238211 cites W2799338476 @default.
- W4291238211 cites W2906252920 @default.
- W4291238211 cites W2920676105 @default.
- W4291238211 cites W2985644328 @default.
- W4291238211 cites W3013149225 @default.
- W4291238211 cites W3013598746 @default.
- W4291238211 cites W3014165167 @default.
- W4291238211 cites W3020845342 @default.
- W4291238211 cites W3026091718 @default.
- W4291238211 cites W3032898152 @default.
- W4291238211 cites W3033297439 @default.
- W4291238211 cites W3081826980 @default.
- W4291238211 cites W3085605123 @default.
- W4291238211 cites W3093766507 @default.
- W4291238211 cites W3094354813 @default.
- W4291238211 cites W3107569396 @default.
- W4291238211 cites W3127490846 @default.
- W4291238211 cites W3134519490 @default.
- W4291238211 cites W3135570121 @default.
- W4291238211 cites W3135997696 @default.
- W4291238211 cites W3149782582 @default.
- W4291238211 cites W3206221984 @default.
- W4291238211 cites W3207019697 @default.
- W4291238211 cites W3209411500 @default.
- W4291238211 cites W4206956848 @default.
- W4291238211 cites W4210734545 @default.
- W4291238211 cites W4220743325 @default.
- W4291238211 cites W4220969678 @default.
- W4291238211 cites W4221004038 @default.
- W4291238211 cites W4283214869 @default.
- W4291238211 cites W801745794 @default.
- W4291238211 doi "https://doi.org/10.1016/j.geogeo.2022.100123" @default.
- W4291238211 hasPublicationYear "2023" @default.
- W4291238211 type Work @default.
- W4291238211 citedByCount "7" @default.
- W4291238211 countsByYear W42912382112022 @default.
- W4291238211 countsByYear W42912382112023 @default.
- W4291238211 crossrefType "journal-article" @default.
- W4291238211 hasAuthorship W4291238211A5005583322 @default.
- W4291238211 hasAuthorship W4291238211A5005627824 @default.
- W4291238211 hasAuthorship W4291238211A5008784741 @default.
- W4291238211 hasAuthorship W4291238211A5010610294 @default.
- W4291238211 hasAuthorship W4291238211A5027205370 @default.
- W4291238211 hasAuthorship W4291238211A5028272884 @default.
- W4291238211 hasAuthorship W4291238211A5036952576 @default.
- W4291238211 hasAuthorship W4291238211A5045498018 @default.
- W4291238211 hasAuthorship W4291238211A5055913216 @default.
- W4291238211 hasAuthorship W4291238211A5086771933 @default.
- W4291238211 hasBestOaLocation W42912382111 @default.
- W4291238211 hasConcept C109007969 @default.
- W4291238211 hasConcept C111168008 @default.
- W4291238211 hasConcept C111472728 @default.
- W4291238211 hasConcept C113740612 @default.
- W4291238211 hasConcept C114793014 @default.
- W4291238211 hasConcept C119857082 @default.
- W4291238211 hasConcept C127313418 @default.
- W4291238211 hasConcept C127413603 @default.
- W4291238211 hasConcept C138885662 @default.
- W4291238211 hasConcept C14641988 @default.
- W4291238211 hasConcept C146588470 @default.
- W4291238211 hasConcept C151730666 @default.
- W4291238211 hasConcept C153127940 @default.
- W4291238211 hasConcept C153180895 @default.
- W4291238211 hasConcept C154945302 @default.
- W4291238211 hasConcept C164866538 @default.
- W4291238211 hasConcept C187320778 @default.
- W4291238211 hasConcept C199360897 @default.
- W4291238211 hasConcept C202444582 @default.
- W4291238211 hasConcept C2779530757 @default.
- W4291238211 hasConcept C33923547 @default.
- W4291238211 hasConcept C41008148 @default.
- W4291238211 hasConcept C46293882 @default.
- W4291238211 hasConcept C50644808 @default.
- W4291238211 hasConcept C548081761 @default.