Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291238401> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4291238401 endingPage "e230024" @default.
- W4291238401 startingPage "e230024" @default.
- W4291238401 abstract "We present a deep learning segmentation model that can automatically and robustly segment all major anatomical structures in body CT images. In this retrospective study, 1204 CT examinations (from the years 2012, 2016, and 2020) were used to segment 104 anatomical structures (27 organs, 59 bones, 10 muscles, 8 vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, pathologies, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients (Dice) to evaluate the model's performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age dependent volume and attenuation changes. The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major pathologies. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 versus 0.871, respectively). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (e.g., age and aortic volume; age and mean attenuation of the autochthonous dorsal musculature). The developed model enables robust and accurate segmentation of 104 anatomical structures. The annotated dataset (https://doi.org/10.5281/zenodo.6802613) and toolkit (https://www.github.com/wasserth/TotalSegmentator) are publicly available." @default.
- W4291238401 created "2022-08-13" @default.
- W4291238401 creator A5001699296 @default.
- W4291238401 creator A5009234990 @default.
- W4291238401 creator A5042673561 @default.
- W4291238401 creator A5060008005 @default.
- W4291238401 creator A5081757049 @default.
- W4291238401 creator A5091808281 @default.
- W4291238401 date "2023-09-01" @default.
- W4291238401 modified "2023-10-16" @default.
- W4291238401 title "TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images." @default.
- W4291238401 cites W186896354 @default.
- W4291238401 cites W1976670047 @default.
- W4291238401 cites W2169813116 @default.
- W4291238401 cites W2562439620 @default.
- W4291238401 cites W2731899572 @default.
- W4291238401 cites W2794518994 @default.
- W4291238401 cites W3000100618 @default.
- W4291238401 cites W3013198566 @default.
- W4291238401 cites W3047319026 @default.
- W4291238401 cites W3047439539 @default.
- W4291238401 cites W3054666633 @default.
- W4291238401 cites W3098715541 @default.
- W4291238401 cites W3099409464 @default.
- W4291238401 cites W3112346810 @default.
- W4291238401 cites W3112701542 @default.
- W4291238401 cites W3158095128 @default.
- W4291238401 cites W3161116672 @default.
- W4291238401 cites W4283772197 @default.
- W4291238401 doi "https://doi.org/10.1148/ryai.230024" @default.
- W4291238401 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37795137" @default.
- W4291238401 hasPublicationYear "2023" @default.
- W4291238401 type Work @default.
- W4291238401 citedByCount "13" @default.
- W4291238401 countsByYear W42912384012023 @default.
- W4291238401 crossrefType "journal-article" @default.
- W4291238401 hasAuthorship W4291238401A5001699296 @default.
- W4291238401 hasAuthorship W4291238401A5009234990 @default.
- W4291238401 hasAuthorship W4291238401A5042673561 @default.
- W4291238401 hasAuthorship W4291238401A5060008005 @default.
- W4291238401 hasAuthorship W4291238401A5081757049 @default.
- W4291238401 hasAuthorship W4291238401A5091808281 @default.
- W4291238401 hasBestOaLocation W42912384011 @default.
- W4291238401 hasConcept C105795698 @default.
- W4291238401 hasConcept C126838900 @default.
- W4291238401 hasConcept C153180895 @default.
- W4291238401 hasConcept C154945302 @default.
- W4291238401 hasConcept C22029948 @default.
- W4291238401 hasConcept C2989005 @default.
- W4291238401 hasConcept C33923547 @default.
- W4291238401 hasConcept C41008148 @default.
- W4291238401 hasConcept C58489278 @default.
- W4291238401 hasConcept C71924100 @default.
- W4291238401 hasConcept C89600930 @default.
- W4291238401 hasConceptScore W4291238401C105795698 @default.
- W4291238401 hasConceptScore W4291238401C126838900 @default.
- W4291238401 hasConceptScore W4291238401C153180895 @default.
- W4291238401 hasConceptScore W4291238401C154945302 @default.
- W4291238401 hasConceptScore W4291238401C22029948 @default.
- W4291238401 hasConceptScore W4291238401C2989005 @default.
- W4291238401 hasConceptScore W4291238401C33923547 @default.
- W4291238401 hasConceptScore W4291238401C41008148 @default.
- W4291238401 hasConceptScore W4291238401C58489278 @default.
- W4291238401 hasConceptScore W4291238401C71924100 @default.
- W4291238401 hasConceptScore W4291238401C89600930 @default.
- W4291238401 hasIssue "5" @default.
- W4291238401 hasLocation W42912384011 @default.
- W4291238401 hasLocation W42912384012 @default.
- W4291238401 hasOpenAccess W4291238401 @default.
- W4291238401 hasPrimaryLocation W42912384011 @default.
- W4291238401 hasRelatedWork W2009559548 @default.
- W4291238401 hasRelatedWork W2016385589 @default.
- W4291238401 hasRelatedWork W2385445039 @default.
- W4291238401 hasRelatedWork W2390936256 @default.
- W4291238401 hasRelatedWork W2475857072 @default.
- W4291238401 hasRelatedWork W2483429559 @default.
- W4291238401 hasRelatedWork W2906397153 @default.
- W4291238401 hasRelatedWork W3021239166 @default.
- W4291238401 hasRelatedWork W3104750253 @default.
- W4291238401 hasRelatedWork W4366341510 @default.
- W4291238401 hasVolume "5" @default.
- W4291238401 isParatext "false" @default.
- W4291238401 isRetracted "false" @default.
- W4291238401 workType "article" @default.